Your browser doesn't support javascript.
loading
Rational Design and Self-Assembly of Coiled-Coil Linked SasG Protein Fibrils.
Jasaitis, Lukas; Silver, Callum D; Rawlings, Andrea E; Peters, Daniel T; Whelan, Fiona; Regan, Lynne; Pasquina-Lemonche, Laia; Potts, Jennifer R; Johnson, Steven D; Staniland, Sarah S.
Afiliación
  • Jasaitis L; Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
  • Silver CD; Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom.
  • Rawlings AE; Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
  • Peters DT; Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
  • Whelan F; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
  • Regan L; Institute for Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3JU, Scotland.
  • Pasquina-Lemonche L; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7HF, United Kingdom.
  • Potts JR; School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.
  • Johnson SD; Department of Biology, University of York, York YO10 5DD, United Kingdom.
  • Staniland SS; Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom.
ACS Synth Biol ; 9(7): 1599-1607, 2020 07 17.
Article en En | MEDLINE | ID: mdl-32551507
Protein engineering is an attractive approach for the self-assembly of nanometer-scale architectures for a range of potential nanotechnologies. Using the versatile chemistry provided by protein folding and assembly, coupled with amino acid side-chain functionality, allows for the construction of precise molecular "protein origami" hierarchical patterned structures for a range of nanoapplications such as stand-alone enzymatic pathways and molecular machines. The Staphyloccocus aureus surface protein SasG is a rigid, rod-like structure shown to have high mechanical strength due to "clamp-like" intradomain features and a stabilizing interface between the G5 and E domains, making it an excellent building block for molecular self-assembly. Here we characterize a new two subunit system composed of the SasG rod protein genetically conjugated with de novo designed coiled-coils, resulting in the self-assembly of fibrils. Circular dichroism (CD) and quartz-crystal microbalance with dissipation (QCM-D) are used to show the specific, alternating binding between the two subunits. Furthermore, we use atomic force microscopy (AFM) to study the extent of subunit polymerization in a liquid environment, demonstrating self-assembly culminating in the formation of linear macromolecular fibrils.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Ingeniería de Proteínas / Proteínas de la Membrana Idioma: En Revista: ACS Synth Biol Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas Bacterianas / Ingeniería de Proteínas / Proteínas de la Membrana Idioma: En Revista: ACS Synth Biol Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido