Your browser doesn't support javascript.
loading
Strain-induced room-temperature ferroelectricity in SrTiO3 membranes.
Xu, Ruijuan; Huang, Jiawei; Barnard, Edward S; Hong, Seung Sae; Singh, Prastuti; Wong, Ed K; Jansen, Thies; Harbola, Varun; Xiao, Jun; Wang, Bai Yang; Crossley, Sam; Lu, Di; Liu, Shi; Hwang, Harold Y.
Afiliación
  • Xu R; Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA. rxu3@stanford.edu.
  • Huang J; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA. rxu3@stanford.edu.
  • Barnard ES; School of Science, Westlake University, Hangzhou, 310012, Zhejiang, China.
  • Hong SS; The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Singh P; Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
  • Wong EK; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Jansen T; Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
  • Harbola V; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Xiao J; The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
  • Wang BY; Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
  • Crossley S; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Lu D; Department of Physics, Stanford University, Stanford, CA, 94305, USA.
  • Liu S; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
  • Hwang HY; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
Nat Commun ; 11(1): 3141, 2020 Jun 19.
Article en En | MEDLINE | ID: mdl-32561835
ABSTRACT
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO3 by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO3 with 2.0% uniaxial tensile strain, corroborated by the notable features of 180° ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos