Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology.
Circ Arrhythm Electrophysiol
; 13(8): e007952, 2020 08.
Article
en En
| MEDLINE
| ID: mdl-32628863
Artificial intelligence (AI) and machine learning (ML) in medicine are currently areas of intense exploration, showing potential to automate human tasks and even perform tasks beyond human capabilities. Literacy and understanding of AI/ML methods are becoming increasingly important to researchers and clinicians. The first objective of this review is to provide the novice reader with literacy of AI/ML methods and provide a foundation for how one might conduct an ML study. We provide a technical overview of some of the most commonly used terms, techniques, and challenges in AI/ML studies, with reference to recent studies in cardiac electrophysiology to illustrate key points. The second objective of this review is to use examples from recent literature to discuss how AI and ML are changing clinical practice and research in cardiac electrophysiology, with emphasis on disease detection and diagnosis, prediction of patient outcomes, and novel characterization of disease. The final objective is to highlight important considerations and challenges for appropriate validation, adoption, and deployment of AI technologies into clinical practice.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Arritmias Cardíacas
/
Procesamiento de Señales Asistido por Computador
/
Potenciales de Acción
/
Inteligencia Artificial
/
Diagnóstico por Computador
/
Técnicas Electrofisiológicas Cardíacas
/
Electrocardiografía
/
Aprendizaje Automático
/
Sistema de Conducción Cardíaco
/
Frecuencia Cardíaca
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Circ Arrhythm Electrophysiol
Asunto de la revista:
ANGIOLOGIA
/
CARDIOLOGIA
Año:
2020
Tipo del documento:
Article