Your browser doesn't support javascript.
loading
Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology.
Feeny, Albert K; Chung, Mina K; Madabhushi, Anant; Attia, Zachi I; Cikes, Maja; Firouznia, Marjan; Friedman, Paul A; Kalscheur, Matthew M; Kapa, Suraj; Narayan, Sanjiv M; Noseworthy, Peter A; Passman, Rod S; Perez, Marco V; Peters, Nicholas S; Piccini, Jonathan P; Tarakji, Khaldoun G; Thomas, Suma A; Trayanova, Natalia A; Turakhia, Mintu P; Wang, Paul J.
Afiliación
  • Feeny AK; Cleveland Clinic Lerner College of Medicine (A.K.F., M.K.C.), Case Western Reserve University, OH.
  • Chung MK; Cleveland Clinic Lerner College of Medicine (A.K.F., M.K.C.), Case Western Reserve University, OH.
  • Madabhushi A; Department of Cardiovascular Medicine, Cleveland Clinic, OH (M.K.C., K.G.T., S.A.T.).
  • Attia ZI; Department of Biomedical Engineering (A.M., M.F.), Case Western Reserve University, OH.
  • Cikes M; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH (A.M.).
  • Firouznia M; Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN (Z.I.A., P.A.F., S.K., P.A.N., ).
  • Friedman PA; Department of Cardiovascular Diseases, University of Zagreb School of Medicine & University Hospital Center Zagreb, Croatia (M.C.).
  • Kalscheur MM; Department of Biomedical Engineering (A.M., M.F.), Case Western Reserve University, OH.
  • Kapa S; Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN (Z.I.A., P.A.F., S.K., P.A.N., ).
  • Narayan SM; Division of Cardiovascular Medicine, Department of Medicine, School of Medicine & Public Health, University of Wisconsin (M.M.K.).
  • Noseworthy PA; William S. Middleton Veterans Hospital, Madison, WI (M.M.K.).
  • Passman RS; Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN (Z.I.A., P.A.F., S.K., P.A.N., ).
  • Perez MV; Division of Cardiovascular Medicine, Stanford University, CA (S.M.N., M.V.P., M.P.T., P.J.W.).
  • Peters NS; Veterans Affairs Palo Alto Health Care System, CA (S.M.N., M.V.P., M.P.T., P.J.W.).
  • Piccini JP; Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN (Z.I.A., P.A.F., S.K., P.A.N., ).
  • Tarakji KG; Division of Cardiology, Northwestern University, Feinberg School of Medicine, Chicago, IL (R.S.P.).
  • Thomas SA; Division of Cardiovascular Medicine, Stanford University, CA (S.M.N., M.V.P., M.P.T., P.J.W.).
  • Trayanova NA; Veterans Affairs Palo Alto Health Care System, CA (S.M.N., M.V.P., M.P.T., P.J.W.).
  • Turakhia MP; National Heart Lung Institute & Centre for Cardiac Engineering, Imperial College London, United Kingdom (N.S.P.).
  • Wang PJ; Duke Clinical Research Institute, Duke University Medical Center, Durham, NC (J.P.P.).
Circ Arrhythm Electrophysiol ; 13(8): e007952, 2020 08.
Article en En | MEDLINE | ID: mdl-32628863
Artificial intelligence (AI) and machine learning (ML) in medicine are currently areas of intense exploration, showing potential to automate human tasks and even perform tasks beyond human capabilities. Literacy and understanding of AI/ML methods are becoming increasingly important to researchers and clinicians. The first objective of this review is to provide the novice reader with literacy of AI/ML methods and provide a foundation for how one might conduct an ML study. We provide a technical overview of some of the most commonly used terms, techniques, and challenges in AI/ML studies, with reference to recent studies in cardiac electrophysiology to illustrate key points. The second objective of this review is to use examples from recent literature to discuss how AI and ML are changing clinical practice and research in cardiac electrophysiology, with emphasis on disease detection and diagnosis, prediction of patient outcomes, and novel characterization of disease. The final objective is to highlight important considerations and challenges for appropriate validation, adoption, and deployment of AI technologies into clinical practice.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arritmias Cardíacas / Procesamiento de Señales Asistido por Computador / Potenciales de Acción / Inteligencia Artificial / Diagnóstico por Computador / Técnicas Electrofisiológicas Cardíacas / Electrocardiografía / Aprendizaje Automático / Sistema de Conducción Cardíaco / Frecuencia Cardíaca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Circ Arrhythm Electrophysiol Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2020 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arritmias Cardíacas / Procesamiento de Señales Asistido por Computador / Potenciales de Acción / Inteligencia Artificial / Diagnóstico por Computador / Técnicas Electrofisiológicas Cardíacas / Electrocardiografía / Aprendizaje Automático / Sistema de Conducción Cardíaco / Frecuencia Cardíaca Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: Circ Arrhythm Electrophysiol Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2020 Tipo del documento: Article