Higher tree diversity increases soil microbial resistance to drought.
Commun Biol
; 3(1): 377, 2020 07 14.
Article
en En
| MEDLINE
| ID: mdl-32665673
Predicted increases in drought frequency and severity may change soil microbial functioning. Microbial resistance and recovery to drought depend on plant community characteristics, among other factors, yet how changes in plant diversity modify microbial drought responses is uncertain. Here, we assessed how repeated drying-rewetting cycles affect soil microbial functioning and whether tree species diversity modifies these effects with a microcosm experiment using soils from different European forests. Our results show that microbial aerobic respiration and denitrification decline under drought but are similar in single and mixed tree species forests. However, microbial communities from mixed forests resist drought better than those from mono-specific forests. This positive tree species mixture effect is robust across forests differing in environmental conditions and species composition. Our data show that mixed forests mitigate drought effects on soil microbial processes, suggesting greater stability of biogeochemical cycling in mixed forests should drought frequency increase in the future.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Microbiología del Suelo
/
Árboles
/
Biodiversidad
/
Sequías
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Commun Biol
Año:
2020
Tipo del documento:
Article
País de afiliación:
Francia