Your browser doesn't support javascript.
loading
NGO online disclosures index in the presence of auxiliary information.
Nazuk, Ayesha; Nadir, Sadia; Ansari, Ali R; Nawaz, Raheel.
Afiliación
  • Nazuk A; School of Social Sciences and Humanities (S3H), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
  • Nadir S; Department of Mathematics and Statistics, Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad, Pakistan.
  • Ansari AR; Department of Mathematics & Natural Sciences, Centre for Applied Mathematics & Bioinformatics, Gulf University for Science & Technology, Kuwait City, Kuwait.
  • Nawaz R; Department of Operations, Technology, Events and Hospitality Management, Manchester Metropolitan University, Manchester, United Kingdom.
PLoS One ; 15(9): e0238297, 2020.
Article en En | MEDLINE | ID: mdl-32931515
This study highlights the need for analysis of online disclosure practices followed by non-governmental organizations; furthermore, it justifies the crucial role of potential correlates of online disclosure practices followed by non-governmental organizations. We propose a novel index for analyzing the extent of online disclosure of non-governmental organizations (NGO). Using the information stored in an auxiliary variable, we propose a new estimator for gauging the average value of the proposed index. Our approach relies on the use of two factors: imperfect ranked-set sampling procedure to link the auxiliary variable with the study variable, and an NGO disclosure index under simple random sampling that uses information only about the study variable. Relative efficiency of the proposed index is compared with the conventional estimator for the population average under the imperfect ranked-set sampling scheme. Mathematical conditions required for retaining the efficiency of the proposed index, in comparison to the imperfect ranked set sampling estimator, are derived. Numerical scrutiny of the relative efficiency, in response to the input variables, indicates; if the variance of the NGO disclosure index is less than the variance of the estimator under imperfect ranked set sampling, then the proposed index is universally efficient compared to the estimator under imperfect ranked set sampling. If the condition on variances is unmet, even then the proposed estimator remains efficient if majority of the NGO share online data on the auxiliary variable. This work can facilitate nonprofit regulation in the countries where most of the non-governmental organizations maintain their websites.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proyectos de Investigación / Revelación de la Verdad / Organizaciones / Internet / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Pakistán

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proyectos de Investigación / Revelación de la Verdad / Organizaciones / Internet / Modelos Teóricos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Pakistán