Quantitative Analysis and Discrimination of Partially Fermented Teas from Different Origins Using Visible/Near-Infrared Spectroscopy Coupled with Chemometrics.
Sensors (Basel)
; 20(19)2020 Sep 23.
Article
en En
| MEDLINE
| ID: mdl-32977413
Partially fermented tea such as oolong tea is a popular drink worldwide. Preventing fraud in partially fermented tea has become imperative to protect producers and consumers from possible economic losses. Visible/near-infrared (VIS/NIR) spectroscopy integrated with stepwise multiple linear regression (SMLR) and support vector machine (SVM) methods were used for origin discrimination of partially fermented tea from Vietnam, China, and different production areas in Taiwan using the full visible NIR wavelength range (400-2498 nm). The SMLR and SVM models achieved satisfactory results. Models using data from chemical constituents' specific wavelength ranges exhibited a high correlation with the spectra of teas, and the SMLR analyses improved discrimination of the types and origins when performing SVM analyses. The SVM models' identification accuracies regarding different production areas in Taiwan were effectively enhanced using a combination of the data within specific wavelength ranges of several constituents. The accuracy rates were 100% for the discrimination of types, origins, and production areas of tea in the calibration and prediction sets using the optimal SVM models integrated with the specific wavelength ranges of the constituents in tea. NIR could be an effective tool for rapid, nondestructive, and accurate inspection of types, origins, and production areas of teas.
Texto completo:
1
Bases de datos:
MEDLINE
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Sensors (Basel)
Año:
2020
Tipo del documento:
Article
País de afiliación:
Taiwán