Your browser doesn't support javascript.
loading
Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae).
Gomard, Yann; Flores, Olivier; Vittecoq, Marion; Blanchon, Thomas; Toty, Céline; Duron, Olivier; Mavingui, Patrick; Tortosa, Pablo; McCoy, Karen D.
Afiliación
  • Gomard Y; Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France. yann.gomard@gmail.com.
  • Flores O; Université de La Réunion, UMR PVBMT (Peuplements Végétaux et Bioagresseurs en Milieu Tropical), CIRAD, Saint-Pierre, La Réunion, France.
  • Vittecoq M; Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France.
  • Blanchon T; Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France.
  • Toty C; Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
  • Duron O; MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France.
  • Mavingui P; MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France.
  • Tortosa P; Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France.
  • McCoy KD; Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
Microb Ecol ; 81(3): 770-783, 2021 Apr.
Article en En | MEDLINE | ID: mdl-33025063
ABSTRACT
Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Rickettsia / Argasidae / Ornithodoros Límite: Animals Idioma: En Revista: Microb Ecol Año: 2021 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Rickettsia / Argasidae / Ornithodoros Límite: Animals Idioma: En Revista: Microb Ecol Año: 2021 Tipo del documento: Article País de afiliación: Francia