Your browser doesn't support javascript.
loading
Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability.
Lan, Wenjie; Niu, Yingchun; Sheng, Mao; Lu, Zhaohui; Yuan, Yong; Zhang, Ye; Zhou, Yang; Xu, Quan.
Afiliación
  • Lan W; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, China University of Petroleum (Beijing), Beijing 102249, China.
  • Niu Y; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, China University of Petroleum (Beijing), Beijing 102249, China.
  • Sheng M; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, China University of Petroleum (Beijing), Beijing 102249, China.
  • Lu Z; National Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China.
  • Yuan Y; National Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China.
  • Zhang Y; National Joint Engineering Research Center for Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China.
  • Zhou Y; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, China University of Petroleum (Beijing), Beijing 102249, China.
  • Xu Q; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, Harvard SEAS-CUPB Joint Laboratory on Petroleum Science, China University of Petroleum (Beijing), Beijing 102249, China.
ACS Omega ; 5(40): 25824-25831, 2020 Oct 13.
Article en En | MEDLINE | ID: mdl-33073107
ABSTRACT
Proppant is a key material, which can increase the production of unconventional petroleum and gas. Excellent proppants with a long migration distance are required in the fracture network. Resin-coated proppants have been confirmed as a good choice because of the long migration and the self-suspending ability in fracturing fluids. However, the distribution of the resin-coated proppants in fracture networks is random. The design of proppants with targeted adsorption is urgently needed. In this study, a novel proppant coated with a phenolic resin shell doped with Fe3O4 nanoparticles on ceramic (coated proppant) was designed and investigated. Based on the results, the coated proppant was adsorbed on the magnetic component's parts of the fracture network surface, which helps in enhancing the uniform distribution of the proppant in the fracture rock cracks. Meanwhile, the self-suspending ability of the coated proppant is five times higher than that of the uncoated proppant and can migrate a longer distance in the fracture network. Moreover, the liquid conductivity of the coated proppant is 30% higher than that of the uncoated ones at a closure pressure of 6.9 MPa. In summary, new insights into the design of functional proppants and further guidelines on the production of unconventional petroleum and gas have been provided in this study.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Omega Año: 2020 Tipo del documento: Article País de afiliación: China