Your browser doesn't support javascript.
loading
Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli.
Flamholz, Avi I; Dugan, Eli; Blikstad, Cecilia; Gleizer, Shmuel; Ben-Nissan, Roee; Amram, Shira; Antonovsky, Niv; Ravishankar, Sumedha; Noor, Elad; Bar-Even, Arren; Milo, Ron; Savage, David F.
Afiliación
  • Flamholz AI; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
  • Dugan E; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
  • Blikstad C; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
  • Gleizer S; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Ben-Nissan R; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Amram S; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Antonovsky N; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Ravishankar S; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
  • Noor E; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Bar-Even A; Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
  • Milo R; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Savage DF; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
Elife ; 92020 10 21.
Article en En | MEDLINE | ID: mdl-33084575
ABSTRACT
Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Dióxido de Carbono / Regulación Bacteriana de la Expresión Génica / Escherichia coli Idioma: En Revista: Elife Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Dióxido de Carbono / Regulación Bacteriana de la Expresión Génica / Escherichia coli Idioma: En Revista: Elife Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos