Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus.
Nat Microbiol
; 6(1): 59-72, 2021 01.
Article
en En
| MEDLINE
| ID: mdl-33168988
Bacteria use small signalling molecules such as (p)ppGpp or c-di-GMP to tune their physiology in response to environmental changes. It remains unclear whether these regulatory networks operate independently or whether they interact to optimize bacterial growth and survival. We report that (p)ppGpp and c-di-GMP reciprocally regulate the growth of Caulobacter crescentus by converging on a single small-molecule-binding protein, SmbA. While c-di-GMP binding inhibits SmbA, (p)ppGpp competes for the same binding site to sustain SmbA activity. We demonstrate that (p)ppGpp specifically promotes Caulobacter growth on glucose, whereas c-di-GMP inhibits glucose consumption. We find that SmbA contributes to this metabolic switch and promotes growth on glucose by quenching the associated redox stress. The identification of an effector protein that acts as a central regulatory hub for two global second messengers opens up future studies on specific crosstalk between small-molecule-based regulatory networks.
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Transferasas
/
Sistemas de Mensajero Secundario
/
Caulobacter crescentus
/
GMP Cíclico
/
Guanosina Pentafosfato
Idioma:
En
Revista:
Nat Microbiol
Año:
2021
Tipo del documento:
Article
País de afiliación:
Suiza