Your browser doesn't support javascript.
loading
Sequential change point detection for high-dimensional data using nonconvex penalized quantile regression.
Ratnasingam, Suthakaran; Ning, Wei.
Afiliación
  • Ratnasingam S; Department of Mathematics, California State University, San Bernardino, CA, USA.
  • Ning W; Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH, USA.
Biom J ; 63(3): 575-598, 2021 03.
Article en En | MEDLINE | ID: mdl-33191556
In this paper, a sequential change point detection method is developed to monitor structural change in smoothly clipped absolute deviation (SCAD) penalized quantile regression (SPQR) models. The asymptotic properties of the test statistic are derived from the null and alternative hypotheses. In order to improve the performance of the SPQR method, we propose a post-SCAD penalized quantile regression estimator (P-SPQR) for high-dimensional data. We examined the finite sample properties of the proposed methods via Monte Carlo studies under different scenarios. A real data application is provided to demonstrate the effectiveness of the method.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Método de Montecarlo Tipo de estudio: Diagnostic_studies / Health_economic_evaluation Idioma: En Revista: Biom J Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Método de Montecarlo Tipo de estudio: Diagnostic_studies / Health_economic_evaluation Idioma: En Revista: Biom J Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos