Your browser doesn't support javascript.
loading
Goals and approaches for each processing step for single-cell RNA sequencing data.
Zhang, Zilong; Cui, Feifei; Wang, Chunyu; Zhao, Lingling; Zou, Quan.
Afiliación
  • Zhang Z; University of Electronic Science and Technology of China.
  • Cui F; University of Tokyo, Japan.
  • Wang C; School of Computer Science and Technology, Harbin Institute of Technology.
  • Zhao L; School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang.
  • Zou Q; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China.
Brief Bioinform ; 22(4)2021 07 20.
Article en En | MEDLINE | ID: mdl-33316046
Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at the cellular level. However, due to the extremely low levels of transcripts in a single cell and technical losses during reverse transcription, gene expression at a single-cell resolution is usually noisy and highly dimensional; thus, statistical analyses of single-cell data are a challenge. Although many scRNA-seq data analysis tools are currently available, a gold standard pipeline is not available for all datasets. Therefore, a general understanding of bioinformatics and associated computational issues would facilitate the selection of appropriate tools for a given set of data. In this review, we provide an overview of the goals and most popular computational analysis tools for the quality control, normalization, imputation, feature selection and dimension reduction of scRNA-seq data.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biología Computacional / Bases de Datos de Ácidos Nucleicos / Análisis de la Célula Individual / RNA-Seq Límite: Animals / Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Biología Computacional / Bases de Datos de Ácidos Nucleicos / Análisis de la Célula Individual / RNA-Seq Límite: Animals / Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article