Your browser doesn't support javascript.
loading
Monitoring sick leave data for early detection of influenza outbreaks.
Duchemin, Tom; Bastard, Jonathan; Ante-Testard, Pearl Anne; Assab, Rania; Daouda, Oumou Salama; Duval, Audrey; Garsi, Jérôme-Philippe; Lounissi, Radowan; Nekkab, Narimane; Neynaud, Helene; Smith, David R M; Dab, William; Jean, Kevin; Temime, Laura; Hocine, Mounia N.
Afiliación
  • Duchemin T; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France. tom.duchemin@cnam.fr.
  • Bastard J; Malakoff Humanis, 21 Rue Laffitte, 75009, Paris, France. tom.duchemin@cnam.fr.
  • Ante-Testard PA; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France.
  • Assab R; Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.
  • Daouda OS; PACRI unit, Conservatoire National des Arts et Métiers, Institut Pasteur, Paris, France.
  • Duval A; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.
  • Garsi JP; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France.
  • Lounissi R; PACRI unit, Conservatoire National des Arts et Métiers, Institut Pasteur, Paris, France.
  • Nekkab N; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France.
  • Neynaud H; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France.
  • Smith DRM; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France.
  • Dab W; Institut Pasteur, Epidemiology and Modelling of Antibiotic Evasion (EMAE), Paris, France.
  • Jean K; Université Paris-Saclay, UVSQ, Inserm, CESP, Anti-infective evasion and pharmacoepidemiology team, Montigny-Le-Bretonneux, France.
  • Temime L; Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France.
  • Hocine MN; MESuRS laboratory, Conservatoire National des Arts et Métiers, 292 Rue Saint-Martin, 75003, Paris, France.
BMC Infect Dis ; 21(1): 52, 2021 Jan 11.
Article en En | MEDLINE | ID: mdl-33430793
BACKGROUND: Workplace absenteeism increases significantly during influenza epidemics. Sick leave records may facilitate more timely detection of influenza outbreaks, as trends in increased sick leave may precede alerts issued by sentinel surveillance systems by days or weeks. Sick leave data have not been comprehensively evaluated in comparison to traditional surveillance methods. The aim of this paper is to study the performance and the feasibility of using a detection system based on sick leave data to detect influenza outbreaks. METHODS: Sick leave records were extracted from private French health insurance data, covering on average 209,932 companies per year across a wide range of sizes and sectors. We used linear regression to estimate the weekly number of new sick leave spells between 2016 and 2017 in 12 French regions, adjusting for trend, seasonality and worker leaves on historical data from 2010 to 2015. Outbreaks were detected using a 95%-prediction interval. This method was compared to results from the French Sentinelles network, a gold-standard primary care surveillance system currently in place. RESULTS: Using sick leave data, we detected 92% of reported influenza outbreaks between 2016 and 2017, on average 5.88 weeks prior to outbreak peaks. Compared to the existing Sentinelles model, our method had high sensitivity (89%) and positive predictive value (86%), and detected outbreaks on average 2.5 weeks earlier. CONCLUSION: Sick leave surveillance could be a sensitive, specific and timely tool for detection of influenza outbreaks.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ausencia por Enfermedad / Vigilancia de Guardia / Absentismo / Gripe Humana / Epidemias / Vigilancia en Salud Pública Tipo de estudio: Diagnostic_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans / Middle aged País/Región como asunto: Europa Idioma: En Revista: BMC Infect Dis Asunto de la revista: DOENCAS TRANSMISSIVEIS Año: 2021 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Ausencia por Enfermedad / Vigilancia de Guardia / Absentismo / Gripe Humana / Epidemias / Vigilancia en Salud Pública Tipo de estudio: Diagnostic_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans / Middle aged País/Región como asunto: Europa Idioma: En Revista: BMC Infect Dis Asunto de la revista: DOENCAS TRANSMISSIVEIS Año: 2021 Tipo del documento: Article País de afiliación: Francia