Your browser doesn't support javascript.
loading
Mitochondrial depolarization promotes calcium alternans: Mechanistic insights from a ventricular myocyte model.
Pandey, Vikas; Xie, Lai-Hua; Qu, Zhilin; Song, Zhen.
Afiliación
  • Pandey V; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America.
  • Xie LH; Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, New Jersey, United States of America.
  • Qu Z; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America.
  • Song Z; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America.
PLoS Comput Biol ; 17(1): e1008624, 2021 01.
Article en En | MEDLINE | ID: mdl-33493168
ABSTRACT
Mitochondria are vital organelles inside the cell and contribute to intracellular calcium (Ca2+) dynamics directly and indirectly via calcium exchange, ATP generation, and production of reactive oxygen species (ROS). Arrhythmogenic Ca2+ alternans in cardiac myocytes has been observed in experiments under abnormal mitochondrial depolarization. However, complex signaling pathways and Ca2+ cycling between mitochondria and cytosol make it difficult in experiments to reveal the underlying mechanisms of Ca2+ alternans under abnormal mitochondrial depolarization. In this study, we use a newly developed spatiotemporal ventricular myocyte computer model that integrates mitochondrial Ca2+ cycling and complex signaling pathways to investigate the mechanisms of Ca2+ alternans during mitochondrial depolarization. We find that elevation of ROS in response to mitochondrial depolarization plays a critical role in promoting Ca2+ alternans. Further examination reveals that the redox effect of ROS on ryanodine receptors and sarco/endoplasmic reticulum Ca2+-ATPase synergistically promote alternans. Upregulation of mitochondrial Ca2+ uniporter promotes Ca2+ alternans via Ca2+-dependent mitochondrial permeability transition pore opening. Due to their relatively slow kinetics, oxidized Ca2+/calmodulin-dependent protein kinase II activation and ATP do not play significant roles acutely in the genesis of Ca2+ alternans after mitochondrial depolarization, but their roles can be significant in the long term, mainly through their effects on sarco/endoplasmic reticulum Ca2+-ATPase activity. In conclusion, mitochondrial depolarization promotes Ca2+ alternans acutely via the redox effect of ROS and chronically by ATP reduction. It suppresses Ca2+ alternans chronically through oxidized Ca2+/calmodulin-dependent protein kinase II activation.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arritmias Cardíacas / Potenciales de Acción / Calcio / Mitocondrias / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arritmias Cardíacas / Potenciales de Acción / Calcio / Mitocondrias / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos