Your browser doesn't support javascript.
loading
CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases.
Ahn, Imjin; Na, Wonjun; Kwon, Osung; Yang, Dong Hyun; Park, Gyung-Min; Gwon, Hansle; Kang, Hee Jun; Jeong, Yeon Uk; Yoo, Jungsun; Kim, Yunha; Jun, Tae Joon; Kim, Young-Hak.
Afiliación
  • Ahn I; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Na W; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Kwon O; Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
  • Yang DH; Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Park GM; Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea.
  • Gwon H; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Kang HJ; Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olumpicro 43gil, Songpagu, Seoul, 05505, Republic of Korea.
  • Jeong YU; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Yoo J; Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olumpicro 43gil, Songpagu, Seoul, 05505, Republic of Korea.
  • Kim Y; Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
  • Jun TJ; Big Data Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88, Olumpicro 43gil, Songpagu, Seoul, 05505, Republic of Korea. taejoon@amc.seoul.kr.
  • Kim YH; Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olumpicro 43gil, Songpagu, Seoul, 05505, Republic of Korea. mdyhkim@amc.seoul.kr.
BMC Med Inform Decis Mak ; 21(1): 29, 2021 01 28.
Article en En | MEDLINE | ID: mdl-33509180
BACKGROUND: Cardiovascular diseases (CVDs) are difficult to diagnose early and have risk factors that are easy to overlook. Early prediction and personalization of treatment through the use of artificial intelligence (AI) may help clinicians and patients manage CVDs more effectively. However, to apply AI approaches to CVDs data, it is necessary to establish and curate a specialized database based on electronic health records (EHRs) and include pre-processed unstructured data. METHODS: To build a suitable database (CardioNet) for CVDs that can utilize AI technology, contributing to the overall care of patients with CVDs. First, we collected the anonymized records of 748,474 patients who had visited the Asan Medical Center (AMC) or Ulsan University Hospital (UUH) because of CVDs. Second, we set clinically plausible criteria to remove errors and duplication. Third, we integrated unstructured data such as readings of medical examinations with structured data sourced from EHRs to create the CardioNet. We subsequently performed natural language processing to structuralize the significant variables associated with CVDs because most results of the principal CVD-related medical examinations are free-text readings. Additionally, to ensure interoperability for convergent multi-center research, we standardized the data using several codes that correspond to the common data model. Finally, we created the descriptive table (i.e., dictionary of the CardioNet) to simplify access and utilization of data for clinicians and engineers and continuously validated the data to ensure reliability. RESULTS: CardioNet is a comprehensive database that can serve as a training set for AI models and assist in all aspects of clinical management of CVDs. It comprises information extracted from EHRs and results of readings of CVD-related digital tests. It consists of 27 tables, a code-master table, and a descriptive table. CONCLUSIONS: CardioNet database specialized in CVDs was established, with continuing data collection. We are actively supporting multi-center research, which may require further data processing, depending on the subject of the study. CardioNet will serve as the fundamental database for future CVD-related research projects.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedades Cardiovasculares Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Inteligencia Artificial / Enfermedades Cardiovasculares Tipo de estudio: Clinical_trials / Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: BMC Med Inform Decis Mak Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article