Your browser doesn't support javascript.
loading
Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells.
He, Hongjian; Lin, Xinyi; Wu, Difei; Wang, Jiaqing; Guo, Jiaqi; Green, Douglas R; Zhang, Hongwei; Xu, Bing.
Afiliación
  • He H; Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
  • Lin X; Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
  • Wu D; Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
  • Wang J; Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
  • Guo J; Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
  • Green DR; Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA.
  • Zhang H; School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA.
  • Xu B; Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
Cell Rep Phys Sci ; 1(12)2020 Dec 23.
Article en En | MEDLINE | ID: mdl-33511360
ABSTRACT
Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Cell Rep Phys Sci Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Cell Rep Phys Sci Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos