Your browser doesn't support javascript.
loading
Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice.
Wilkinson, Adam C; Dever, Daniel P; Baik, Ron; Camarena, Joab; Hsu, Ian; Charlesworth, Carsten T; Morita, Chika; Nakauchi, Hiromitsu; Porteus, Matthew H.
Afiliación
  • Wilkinson AC; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA. adamcw@stanford.edu.
  • Dever DP; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA. adamcw@stanford.edu.
  • Baik R; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
  • Camarena J; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
  • Hsu I; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
  • Charlesworth CT; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
  • Morita C; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
  • Nakauchi H; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
  • Porteus MH; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive, Stanford, CA, USA.
Nat Commun ; 12(1): 686, 2021 01 29.
Article en En | MEDLINE | ID: mdl-33514718
ABSTRACT
CRISPR/Cas9-mediated beta-globin (HBB) gene correction of sickle cell disease (SCD) patient-derived hematopoietic stem cells (HSCs) in combination with autologous transplantation represents a recent paradigm in gene therapy. Although several Cas9-based HBB-correction approaches have been proposed, functional correction of in vivo erythropoiesis has not been investigated previously. Here, we use a humanized globin-cluster SCD mouse model to study Cas9-AAV6-mediated HBB-correction in functional HSCs within the context of autologous transplantation. We discover that long-term multipotent HSCs can be gene corrected ex vivo and stable hemoglobin-A production can be achieved in vivo from HBB-corrected HSCs following autologous transplantation. We observe a direct correlation between increased HBB-corrected myeloid chimerism and normalized in vivo red blood cell (RBC) features, but even low levels of chimerism resulted in robust hemoglobin-A levels. Moreover, this study offers a platform for gene editing of mouse HSCs for both basic and translational research.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Terapia Genética / Trasplante de Células Madre Hematopoyéticas / Eritropoyesis / Globinas beta / Anemia de Células Falciformes Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Terapia Genética / Trasplante de Células Madre Hematopoyéticas / Eritropoyesis / Globinas beta / Anemia de Células Falciformes Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Animals / Female / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos