Your browser doesn't support javascript.
loading
COVID-19: Nothing is Normal in this Pandemic.
Gonçalves, Luzia; Turkman, Maria Antónia Amaral; Geraldes, Carlos; Marques, Tiago A; Sousa, Lisete.
Afiliación
  • Gonçalves L; Global Health and Tropical Medicine, Unidade de Saúde Pública Internacional e Bioestatística, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, Lisboa 1349-008, Portugal.
  • Turkman MAA; CEAUL - Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Portugal.
  • Geraldes C; CEAUL - Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Portugal.
  • Marques TA; CEAUL - Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Portugal.
  • Sousa L; ISEL - Instituto Superior de Engenharia de Lisboa - Instituto Politécnico de Lisboa, Portugal.
J Epidemiol Glob Health ; 11(2): 146-149, 2021 06.
Article en En | MEDLINE | ID: mdl-33605119
This manuscript brings attention to inaccurate epidemiological concepts that emerged during the COVID-19 pandemic. In social media and scientific journals, some wrong references were given to a "normal epidemic curve" and also to a "log-normal curve/distribution". For many years, textbooks and courses of reputable institutions and scientific journals have disseminated misleading concepts. For example, calling histogram to plots of epidemic curves or using epidemic data to introduce the concept of a Gaussian distribution, ignoring its temporal indexing. Although an epidemic curve may look like a Gaussian curve and be eventually modelled by a Gauss function, it is not a normal distribution or a log-normal, as some authors claim. A pandemic produces highly-complex data and to tackle it effectively statistical and mathematical modelling need to go beyond the "one-size-fits-all solution". Classical textbooks need to be updated since pandemics happen and epidemiology needs to provide reliable information to policy recommendations and actions.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diseño de Investigaciones Epidemiológicas / Modelos Estadísticos / Pandemias / COVID-19 Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Epidemiol Glob Health Año: 2021 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diseño de Investigaciones Epidemiológicas / Modelos Estadísticos / Pandemias / COVID-19 Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Epidemiol Glob Health Año: 2021 Tipo del documento: Article País de afiliación: Portugal