Your browser doesn't support javascript.
loading
Efficient G protein coupling is not required for agonist-mediated internalization and membrane reorganization of the adenosine A3 receptor.
Stoddart, Leigh A; Kilpatrick, Laura E; Corriden, Ross; Kellam, Barrie; Briddon, Stephen J; Hill, Stephen J.
Afiliación
  • Stoddart LA; Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.
  • Kilpatrick LE; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
  • Corriden R; Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.
  • Kellam B; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
  • Briddon SJ; School of Pharmacy, Biodiscovery Institute, University Park Nottingham, Nottingham, UK.
  • Hill SJ; Cell Signalling and Pharmacology Research Group, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK.
FASEB J ; 35(4): e21211, 2021 04.
Article en En | MEDLINE | ID: mdl-33710641
Organization of G protein-coupled receptors at the plasma membrane has been the focus of much recent attention. Advanced microscopy techniques have shown that these receptors can be localized to discrete microdomains and reorganization upon ligand activation is crucial in orchestrating their signaling. Here, we have compared the membrane organization and downstream signaling of a mutant (R108A, R3.50A) of the adenosine A3 receptor (A3 AR) to that of the wild-type receptor. Fluorescence Correlation Spectroscopy (FCS) studies with a fluorescent agonist (ABEA-X-BY630) demonstrated that both wild-type and mutant receptors bind agonist with high affinity but in subsequent downstream signaling assays the R108A mutation abolished agonist-mediated inhibition of cAMP production and ERK phosphorylation. In further FCS studies, both A3 AR and A3 AR R108A underwent similar agonist-induced increases in receptor density and molecular brightness which were accompanied by a decrease in membrane diffusion after agonist treatment. Using bimolecular fluorescence complementation, experiments showed that the R108A mutant retained the ability to recruit ß-arrestin and these receptor/arrestin complexes displayed similar membrane diffusion and organization to that observed with wild-type receptors. These data demonstrate that effective G protein signaling is not a prerequisite for agonist-stimulated ß-arrestin recruitment and membrane reorganization of the A3 AR.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Compuestos de Boro / Adenosina / Proteínas de Unión al GTP / Receptor de Adenosina A3 / Agonistas del Receptor de Adenosina A3 Límite: Animals Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Compuestos de Boro / Adenosina / Proteínas de Unión al GTP / Receptor de Adenosina A3 / Agonistas del Receptor de Adenosina A3 Límite: Animals Idioma: En Revista: FASEB J Asunto de la revista: BIOLOGIA / FISIOLOGIA Año: 2021 Tipo del documento: Article