Exploring Ligand-Centered Hydride and H-Atom Transfer.
Inorg Chem
; 60(7): 5367-5375, 2021 Apr 05.
Article
en En
| MEDLINE
| ID: mdl-33733764
The nickel(II) complex [ON(H)O]Ni(PPh3) ([ON(H)O]2- = bis(3,5-di-tert-butyl-2-phenoxy)amine), bearing a protonated redox-active ligand, was examined for its ability to serve as a hydrogen atom (Hâ¢) and hydride (H-) donor. Deprotonation of [ON(H)O]Ni(PPh3) afforded the square-planar anion {[ONOcat]Ni(PPh3)}1-, whereas hydrogen atom transfer from [ON(H)O]Ni(PPh3) to TEMPO⢠in the presence of added PPh3 afforded five-coordinate [ONO]Ni(PPh3)2 that has been structurally characterized. In solution, this five-coordinate complex exists in equilibrium with four-coordinate [ONO]Ni(PPh3), and this ligand exchange equilibrium correlates with a valence tautomerization between the redox-active ligand and the nickel center. Abstraction of a hydride from [ON(H)O]Ni(PPh3) in the presence of PPh3 afforded the octahedral complex, [ONOq]Ni(OTf)(PPh3)2, which was characterized as an S = 1, nickel(II) complex. Bond dissociation free energy (BDFE) and hydricity (ΔG°H-) measurements benchmark the thermodynamic propensity of this complex to participate in ligand-centered H⢠and H- transfer reactions.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos