Your browser doesn't support javascript.
loading
Mechanism for the Reaction of White Phosphorus with Cp2Cr2(CO)6 Leading Ultimately to the Triple-Decker Sandwich Cp2Cr2(µ-η5,η5-P5): A Theoretical Study.
Zhang, Zhong; Yang, Zhipeng; Pu, Liang; Chen, Xian; Li, Yun; Wang, Jianping; Zhao, Lingzhi; King, R Bruce.
Afiliación
  • Zhang Z; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
  • Yang Z; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
  • Pu L; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
  • Chen X; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
  • Li Y; College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
  • Wang J; Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, Xijing University, Xi'an, Shaanxi 710123, P. R. China.
  • Zhao L; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, P. R. China.
  • King RB; Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, United States.
Inorg Chem ; 60(8): 5955-5968, 2021 Apr 19.
Article en En | MEDLINE | ID: mdl-33834774
The experimentally known reaction of Cp2Cr2(CO)6 with white phosphorus (P4) to give CpCr(CO)2(η3-P3), Cp2Cr2(CO)4(µ-η,2η2-P2), and the triple-decker sandwich Cp2Cr2(µ-η,5η5-P5) is of interest since the P4 reactant having a tetrahedral cluster of four phosphorus atoms is converted to products having P2, P3, and P5 ligands. The mechanism of this obviously complicated reaction can be dissected into three stages using a coupled cluster theoretical method that has been benchmarked with the P2, Mn(CO)5, and CpCr(CO)3 dimerization processes. The first stage of the Cp2Cr2(CO)6/P4 reaction mechanism generates the unsaturated singlet intermediate Cp2Cr2(CO)5 that combines with the P4 reactant. Decarbonylation of the resulting Cp2Cr2(CO)5(P4) complex provides a singlet tetracarbonyl readily fragmenting into the stable triphosphacyclopropenyl complex CpCr(CO)2(η3-P3) and the chromium phosphide CpCr(CO)2(P). The isomeric triplet tetracarbonyl Cp2Cr2(CO)4(P4), readily fragments into CpCr(CO)2(η2-P2), which can generate the stable diphosphaacetylene complex Cp2Cr2(CO)4(η,2η2-P2) as well as the pentamer [CpCr(CO)2]5(P10). Combination of the coordinately unsaturated CpCr(CO)(η3-P3) with CpCr(CO)2(η2-P2) can lead to a ring expansion. This generates the P5 pentagonal ligand in a Cp2Cr2(CO)3(P5) precursor to the experimentally observed carbonyl-free triple-decker sandwich Cp2Cr2(µ-η,5η5-P5) after three successive decarbonylations.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2021 Tipo del documento: Article