Your browser doesn't support javascript.
loading
Growth-defense trade-offs masked in unadmixed populations are revealed by hybridization.
Fetter, Karl C; Nelson, David M; Keller, Stephen R.
Afiliación
  • Fetter KC; Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA.
  • Nelson DM; Department of Plant Biology, University of Vermont, Burlington, Vermont, 05405, USA.
  • Keller SR; Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, 21532, USA.
Evolution ; 75(6): 1450-1465, 2021 06.
Article en En | MEDLINE | ID: mdl-33914360
ABSTRACT
Organisms are constantly challenged by pathogens and pests, which can drive the evolution of growth-defense strategies. Plant stomata are essential for gas exchange during photosynthesis and conceptually lie at the intersection of the physiological demands of growth and exposure to foliar fungal pathogens. Generations of natural selection for locally adapted growth-defense strategies can eliminate variation between traits, potentially masking trade-offs and selection conflicts that may have existed in the past. Hybrid populations offer a unique opportunity to reset the clock on selection and to study potentially maladaptive trait variation before selection removes it. We study the interactions of growth, stomatal, ecopysiological, and disease resistance traits in poplars (Populus) after infection by the leaf rust Melampsora medusae. Phenotypes were measured in a common garden and genotyped at 227K SNPs. We isolate the effects of hybridization on trait variance, discover correlations between stomatal, ecophysiology, and disease resistance, examine trade-offs and selection conflicts, and explore the evolution of growth-defense strategies potentially mediated by selection for stomatal traits on the upper leaf surface. These results suggest an important role for stomata in determining growth-defense strategies in organisms susceptible to foliar pathogens, and reinforces the contribution of hybridization studies toward our understanding of trait evolution.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Populus / Estomas de Plantas / Resistencia a la Enfermedad / Hibridación Genética País/Región como asunto: America do norte Idioma: En Revista: Evolution Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Populus / Estomas de Plantas / Resistencia a la Enfermedad / Hibridación Genética País/Región como asunto: America do norte Idioma: En Revista: Evolution Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos