Your browser doesn't support javascript.
loading
Using heterogeneous data to identify signatures of dengue outbreaks at fine spatio-temporal scales across Brazil.
Castro, Lauren A; Generous, Nicholas; Luo, Wei; Pastore Y Piontti, Ana; Martinez, Kaitlyn; Gomes, Marcelo F C; Osthus, Dave; Fairchild, Geoffrey; Ziemann, Amanda; Vespignani, Alessandro; Santillana, Mauricio; Manore, Carrie A; Del Valle, Sara Y.
Afiliación
  • Castro LA; Information Systems and Modeling Group, Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  • Generous N; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  • Luo W; National Security and Defense Program Office, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  • Pastore Y Piontti A; Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, United States of America.
  • Martinez K; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America.
  • Gomes MFC; Geography Department, National University of Singapore, Singapore, Singapore.
  • Osthus D; Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, Massachusetts, United States of America.
  • Fairchild G; Information Systems and Modeling Group, Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  • Ziemann A; Department of Mathematics & Statistics, Colorado School of Mines, Golden, Colorado, United States of America.
  • Vespignani A; Núcleo de Métodos Analíticos em Vigilância Epidemiológica Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
  • Santillana M; Statistical Sciences Group, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  • Manore CA; Information Systems and Modeling Group, Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
  • Del Valle SY; Space Data Science and Systems Group, Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
PLoS Negl Trop Dis ; 15(5): e0009392, 2021 05.
Article en En | MEDLINE | ID: mdl-34019536
Dengue virus remains a significant public health challenge in Brazil, and seasonal preparation efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a framework for characterizing weekly dengue activity at the Brazilian mesoregion level from 2010-2016 as time series properties that are relevant to forecasting efforts, focusing on outbreak shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition, we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and census data streams and regression methods to identify a parsimonious set of covariates that explain each time series property. The models explained 54% of the variation in outbreak shape, 38% of seasonal onset, 34% of pairwise correlation in outbreak timing, and 11% of pairwise correlation in outbreak magnitude. Regions that have experienced longer periods of drought sensitivity, as captured by the "normalized burn ratio," experienced less intense outbreaks, while regions with regular fluctuations in relative humidity had less regular seasonal outbreaks. Both the pairwise correlations in outbreak timing and outbreak trend between mesoresgions were best predicted by distance. Our analysis also revealed the presence of distinct geographic clusters where dengue properties tend to be spatially correlated. Forecasting models aimed at predicting the dynamics of dengue activity need to identify the most salient variables capable of contributing to accurate predictions. Our findings show that successful models may need to leverage distinct variables in different locations and be catered to a specific task, such as predicting outbreak magnitude or timing characteristics, to be useful. This advocates in favor of "adaptive models" rather than "one-size-fits-all" models. The results of this study can be applied to improving spatial hierarchical or target-focused forecasting models of dengue activity across Brazil.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Brotes de Enfermedades / Dengue / Predicción Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do sul / Brasil Idioma: En Revista: PLoS Negl Trop Dis Asunto de la revista: MEDICINA TROPICAL Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Brotes de Enfermedades / Dengue / Predicción Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: America do sul / Brasil Idioma: En Revista: PLoS Negl Trop Dis Asunto de la revista: MEDICINA TROPICAL Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos