High-Performance Organic Solar Cells Featuring Double Bulk Heterojunction Structures with Vertical-Gradient Selenium Heterocyclic Nonfullerene Acceptor Concentrations.
ACS Appl Mater Interfaces
; 13(23): 27227-27236, 2021 Jun 16.
Article
en En
| MEDLINE
| ID: mdl-34096256
In this study, we prepared organic photovoltaics (OPVs) featuring an active layer comprising double bulk heterojunction (BHJ) structures, featuring binary blends of a polymer donor and concentration gradients of two small-molecule acceptors. After forming the first BHJ structure by spin-coating, the second BHJ layer was transfer-printed onto the first using polydimethylsiloxane stamps. A specially designed selenium heterocyclic small-molecule acceptor (Y6-Se-4Cl) was employed as the second acceptor in the BHJ. X-ray photoelectron spectroscopy revealed that the two acceptors formed a gradient concentration profile across the active layer, thereby facilitating charge transportation. The best power conversion efficiencies (PCEs) for the double-BHJ-structured devices incorporating PM6:Y6-Se-4Cl/PM6:Y6 and PM6:Y6-Se-4Cl/PM6:IT-4Cl were 16.4 and 15.8%, respectively; these values were higher than those of devices having one-BHJ structures based on PM6:Y6-Se-4Cl (15.0%), PM6:Y6 (15.4%), and PM6:IT-4Cl (11.6%), presumably because of the favorable vertical concentration gradient of the selenium-containing small-molecule Y6-Se-4Cl in the active layer as well as some complementary light absorption. Thus, combining two BHJ structures with a concentration gradient of the two small-molecule acceptors can be an effective approach for enhancing the PCEs of OPVs.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Taiwán