Your browser doesn't support javascript.
loading
Chemical tuning of spin clock transitions in molecular monomers based on nuclear spin-free Ni(ii).
Rubín-Osanz, Marcos; Lambert, François; Shao, Feng; Rivière, Eric; Guillot, Régis; Suaud, Nicolas; Guihéry, Nathalie; Zueco, David; Barra, Anne-Laure; Mallah, Talal; Luis, Fernando.
Afiliación
  • Rubín-Osanz M; Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza 50009 Zaragoza Spain fluis@unizar.es.
  • Lambert F; Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay 91405 Orsay Cedex France talal.mallah@universite-paris-saclay.fr.
  • Shao F; Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay 91405 Orsay Cedex France talal.mallah@universite-paris-saclay.fr.
  • Rivière E; Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay 91405 Orsay Cedex France talal.mallah@universite-paris-saclay.fr.
  • Guillot R; Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay 91405 Orsay Cedex France talal.mallah@universite-paris-saclay.fr.
  • Suaud N; Laboratoire de Chimie et Physique Quantiques, Université Paul Sabatier 31062 Toulouse Cedex 4 France.
  • Guihéry N; Laboratoire de Chimie et Physique Quantiques, Université Paul Sabatier 31062 Toulouse Cedex 4 France.
  • Zueco D; Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza 50009 Zaragoza Spain fluis@unizar.es.
  • Barra AL; Laboratoire National des Champs Magnétiques Intenses, CNRS-Univ. Grenoble-Alpes 38042 Grenoble Cedex 9 France.
  • Mallah T; Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS, Université Paris-Saclay 91405 Orsay Cedex France talal.mallah@universite-paris-saclay.fr.
  • Luis F; Instituto de Nanociencia y Materiales de Aragón, CSIC-Universidad de Zaragoza 50009 Zaragoza Spain fluis@unizar.es.
Chem Sci ; 12(14): 5123-5133, 2021 Feb 25.
Article en En | MEDLINE | ID: mdl-34168771
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes. The level anti-crossing, or magnetic "clock transition", associated with this gap has been directly monitored by heat capacity experiments. The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions. In addition, we show that the quantum tunnelling splitting admits a chemical tuning via the modification of the ligand shell that determines the crystal field and the magnetic anisotropy. These properties are crucial to realize model spin qubits that combine the necessary resilience against decoherence, a proper interfacing with other qubits and with the control circuitry and the ability to initialize them by cooling.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2021 Tipo del documento: Article