Your browser doesn't support javascript.
loading
A multiple-trait analysis of ecohydrological acclimatisation in a dryland phreatophytic shrub.
Torres-García, M Trinidad; Salinas-Bonillo, María J; Cleverly, Jamie R; Gisbert, Juan; Pacheco-Romero, Manuel; Cabello, Javier.
Afiliación
  • Torres-García MT; Department of Biology and Geology, University of Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, 04120, Almería, Spain. m.t.torres@ual.es.
  • Salinas-Bonillo MJ; Andalusian Center for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain. m.t.torres@ual.es.
  • Cleverly JR; Department of Biology and Geology, University of Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, 04120, Almería, Spain.
  • Gisbert J; Andalusian Center for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Almería, Spain.
  • Pacheco-Romero M; School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
  • Cabello J; Department of Biology and Geology, University of Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, 04120, Almería, Spain.
Oecologia ; 196(4): 1179-1193, 2021 Aug.
Article en En | MEDLINE | ID: mdl-34331567
ABSTRACT
Water is the main limiting factor for groundwater-dependent ecosystems (GDEs) in drylands. Predicted climate change (precipitation reductions and temperature increases) and anthropogenic activities such as groundwater drawdown jeopardise the functioning of these ecosystems, presenting new challenges for their management. We developed a trait-based analysis to examine the spatiotemporal variability in the ecophysiology of Ziziphus lotus, a long-lived phreatophyte that dominates one of the few terrestrial GDEs of semiarid regions in Europe. We assessed morpho-functional traits and stem water potential along a naturally occurring gradient of depth-to-groundwater (DTGW, 2-25 m) in a coastal aquifer, and throughout the species-growing season. Increasing DTGW and salinity negatively affected photosynthetic and transpiration rates, increasing plant water stress (lower predawn and midday water potential), and positively affected Huber value (sapwood cross-sectional area per leaf area), reducing leaf area and likely, plant hydraulic demand. However, the species showed greater salt-tolerance at shallow depths. Despite groundwater characteristics, higher atmospheric evaporative demand in the study area, which occurred in summer, fostered higher transpiration rates and water stress, and promoted carbon assimilation and water loss more intensively at shallow water tables. This multiple-trait analysis allowed us to identify plant ecophysiological thresholds related to the increase in salinity, but mostly in DTGW (13 m), and in the evaporative demand during the growing season. These findings highlight the existence of tipping points in the functioning of a long-lived phreatophyte in drylands and can contribute to the sustainable management of GDEs in southern Europe, paving the way for further studies on phreatophytic species.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Agua Subterránea / Ecosistema Tipo de estudio: Prognostic_studies Idioma: En Revista: Oecologia Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Agua Subterránea / Ecosistema Tipo de estudio: Prognostic_studies Idioma: En Revista: Oecologia Año: 2021 Tipo del documento: Article País de afiliación: España