Your browser doesn't support javascript.
loading
Genome-wide identification of CK gene family suggests functional expression pattern against Cd2+ stress in Gossypium hirsutum L.
Wang, Jing; Zhang, Yuexin; Xu, Nan; Zhang, Hong; Fan, Yapeng; Rui, Cun; Han, Mingge; Malik, Waqar Afzal; Wang, Qinqin; Sun, Liangqing; Chen, Xiugui; Lu, Xuke; Wang, Delong; Zhao, Lanjie; Wang, Junjuan; Wang, Shuai; Chen, Chao; Guo, Lixue; Ye, Wuwei.
Afiliación
  • Wang J; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Zhang Y; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Xu N; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Zhang H; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Fan Y; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Rui C; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Han M; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Malik WA; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Wang Q; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Sun L; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Chen X; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Lu X; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Wang D; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Zhao L; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Wang J; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Wang S; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Chen C; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Guo L; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China.
  • Ye W; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Research Base, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China. Electronic address: yewuwei@caas.cn.
Int J Biol Macromol ; 188: 272-282, 2021 Oct 01.
Article en En | MEDLINE | ID: mdl-34364943
ABSTRACT
Choline kinase (CK) gene plays an important role in plants growth, development and resistance to stress. It mainly regulates the biosynthesis of phosphatidylcholine. This study aims to explore the structure-function relationship, and to provide a framework for functional validation and biochemical characterization of various CK genes. Our analysis showed that 87 CK genes were identified in cotton and 7 diploid plants, of which 43 genes encode CK proteins in 4 cotton species, and 13 genes were identified in Gossypium hirsutum. Most of GhCK genes are affected by the abiotic stress conditions, indicating the importance of CK proteins for plant development and response to abiotic stress. RT-qPCR analysis showed the tissue specificity of GhCK genes in response to Cd2+ and other abiotic stresses. Under Cd2+ stress, the expression level of GhCK gene family members has undergone different changes. The expression level of GhCK5 was enhanced, indicating that Cd2+ stress caused the increase of phosphatidylcholine content, which in turn reacted on the plant cell membrane, finally reached the absorption of Cd2+ into plant cells to repair Cd2+ the purpose of contaminated soil. This study will further broaden our understanding of the association between evolution and function of the GhCK gene family.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fosfatidilcolinas / Colina Quinasa / Genoma de Planta / Gossypium Tipo de estudio: Diagnostic_studies Idioma: En Revista: Int J Biol Macromol Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fosfatidilcolinas / Colina Quinasa / Genoma de Planta / Gossypium Tipo de estudio: Diagnostic_studies Idioma: En Revista: Int J Biol Macromol Año: 2021 Tipo del documento: Article País de afiliación: China