Your browser doesn't support javascript.
loading
Efficient Neuroprotective Rescue of Sacsin-Related Disease Phenotypes in Zebrafish.
Naef, Valentina; Marchese, Maria; Ogi, Asahi; Fichi, Gianluca; Galatolo, Daniele; Licitra, Rosario; Doccini, Stefano; Verri, Tiziano; Argenton, Francesco; Morani, Federica; Santorelli, Filippo M.
Afiliación
  • Naef V; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
  • Marchese M; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
  • Ogi A; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
  • Fichi G; Struttura Complessa Toscana Sud (Grosseto), Istituto Zooprofilattico Sperimentale del Lazio e Toscana M. Aleandri, 58100 Grosseto, Italy.
  • Galatolo D; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
  • Licitra R; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
  • Doccini S; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
  • Verri T; Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
  • Argenton F; Department of Biology, University of Padua, 35131 Padua, Italy.
  • Morani F; Department of Biology, University of Pisa, 56124 Pisa, Italy.
  • Santorelli FM; Neurobiology and Molecular Medicine, IRCCS Fondazione Stella Maris, 56128 Pisa, Italy.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article en En | MEDLINE | ID: mdl-34445111
ABSTRACT
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a multisystem hereditary ataxia associated with mutations in SACS, which encodes sacsin, a protein of still only partially understood function. Although mouse models of ARSACS mimic largely the disease progression seen in humans, their use in the validation of effective therapies has not yet been proposed. Recently, the teleost Danio rerio has attracted increasing attention as a vertebrate model that allows rapid and economical screening, of candidate molecules, and thus combines the advantages of whole-organism phenotypic assays and in vitro high-throughput screening assays. Through CRISPR/Cas9-based mutagenesis, we generated and characterized a zebrafish sacs-null mutant line that replicates the main features of ARSACS. The sacs-null fish showed motor impairment, hindbrain atrophy, mitochondrial dysfunction, and reactive oxygen species accumulation. As proof of principle for using these mutant fish in high-throughput screening studies, we showed that both acetyl-DL-leucine and tauroursodeoxycholic acid improved locomotor and biochemical phenotypes in sacs-/- larvae treated with these neuroprotective agents, by mediating significant rescue of the molecular functions altered by sacsin loss. Taken together, the evidence here reported shows the zebrafish to be a valuable model organism for the identification of novel molecular mechanisms and for efficient and rapid in vivo optimization and screening of potential therapeutic compounds. These findings may pave the way for new interventions targeting the earliest phases of Purkinje cell degeneration in ARSACS.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pez Cebra / Fármacos Neuroprotectores / Proteínas de Choque Térmico Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Pez Cebra / Fármacos Neuroprotectores / Proteínas de Choque Térmico Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Italia