Your browser doesn't support javascript.
loading
Resolvin Conjugates in Tissue Regeneration 1 Promote Alveolar Fluid Clearance by Activating Alveolar Epithelial Sodium Channels and Na, K-ATPase in Lipopolysaccharide-Induced Acute Lung Injury.
Yang, Qian; Xu, Hao-Ran; Xiang, Shu-Yang; Zhang, Chen; Ye, Yang; Shen, Chen-Xi; Mei, Hong-Xia; Zhang, Pu-Hong; Ma, Hong-Yu; Zheng, Sheng-Xing; Smith, Fang-Gao; Jin, Sheng-Wei; Wang, Qian.
Afiliación
  • Yang Q; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Xu HR; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Xiang SY; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Zhang C; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Ye Y; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Shen CX; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Mei HX; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Zhang PH; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Ma HY; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Zheng SX; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Smith FG; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Jin SW; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
  • Wang Q; Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (Q.Y., H.X., S.X., Y.Y., C.S., H.M., P.Z., H.Ma, S.Z. F.S., S.J., Q.W.), and Wenzhou Medical University (C.Z.), Zhejiang, China; and Institute of Inflammation and A
J Pharmacol Exp Ther ; 379(2): 156-165, 2021 11.
Article en En | MEDLINE | ID: mdl-34465632
ABSTRACT
Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 µg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Alveolos Pulmonares / Ácidos Docosahexaenoicos / ATPasa Intercambiadora de Sodio-Potasio / Canales Epiteliales de Sodio / Lesión Pulmonar Aguda / Agonistas del Canal de Sodio Epitelial Límite: Animals Idioma: En Revista: J Pharmacol Exp Ther Año: 2021 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Alveolos Pulmonares / Ácidos Docosahexaenoicos / ATPasa Intercambiadora de Sodio-Potasio / Canales Epiteliales de Sodio / Lesión Pulmonar Aguda / Agonistas del Canal de Sodio Epitelial Límite: Animals Idioma: En Revista: J Pharmacol Exp Ther Año: 2021 Tipo del documento: Article