Your browser doesn't support javascript.
loading
Fabrication of GaN/Diamond Heterointerface and Interfacial Chemical Bonding State for Highly Efficient Device Design.
Liang, Jianbo; Kobayashi, Ayaka; Shimizu, Yasuo; Ohno, Yutaka; Kim, Seong-Woo; Koyama, Koji; Kasu, Makoto; Nagai, Yasuyoshi; Shigekawa, Naoteru.
Afiliación
  • Liang J; Department of Electronic Information Systems, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
  • Kobayashi A; Department of Electronic Information Systems, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
  • Shimizu Y; Institute for Materials Research (IMR), Tohoku University, 2145-2 Narita, Oarai, Ibaraki, 311-1313, Japan.
  • Ohno Y; Institute for Materials Research (IMR), Tohoku University, 2-1-1 Katahira, Sendai, 980-8577, Japan.
  • Kim SW; Adamant Namiki Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511, Japan.
  • Koyama K; Adamant Namiki Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511, Japan.
  • Kasu M; Department of Electrical and Electronic Engineering, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan.
  • Nagai Y; Institute for Materials Research (IMR), Tohoku University, 2145-2 Narita, Oarai, Ibaraki, 311-1313, Japan.
  • Shigekawa N; Department of Electronic Information Systems, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
Adv Mater ; 33(43): e2104564, 2021 Oct.
Article en En | MEDLINE | ID: mdl-34498296
ABSTRACT
The direct integration of gallium nitride (GaN) and diamond holds much promise for high-power devices. However, it is a big challenge to grow GaN on diamond due to the large lattice and thermal-expansion coefficient mismatch between GaN and diamond. In this work, the fabrication of a GaN/diamond heterointerface is successfully achieved by a surface activated bonding (SAB) method at room temperature. A small compressive stress exists in the GaN/diamond heterointerface, which is significantly smaller than that of the GaN-on-diamond structure with a transition layer formed by crystal growth. A 5.3 nm-thick intermediate layer composed of amorphous carbon and diamond is formed at the as-bonded heterointerface. Ga and N atoms are distributed in the intermediate layer by diffusion during the bonding process. Both the thickness and the sp2 -bonded carbon ratio of the intermediate layer decrease as the annealing temperature increases, which indicates that the amorphous carbon is directly converted into diamond after annealing. The diamond of the intermediate layer acts as a seed crystal. After annealing at 1000 °C, the thickness of the intermediate layer is decreased to approximately 1.5 nm, where lattice fringes of the diamond (220) plane are observed.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Japón