A zebrafish screen reveals Renin-angiotensin system inhibitors as neuroprotective via mitochondrial restoration in dopamine neurons.
Elife
; 102021 09 22.
Article
en En
| MEDLINE
| ID: mdl-34550070
Parkinson's disease is caused by the slow death and deterioration of brain cells, in particular of the neurons that produce a chemical messenger known as dopamine. Certain drugs can mitigate the resulting drop in dopamine levels and help to manage symptoms, but they cause dangerous side-effects. There is no treatment that can slow down or halt the progress of the condition, which affects 0.3% of the population globally. Many factors, both genetic and environmental, contribute to the emergence of Parkinson's disease. For example, dysfunction of the mitochondria, the internal structures that power up cells, is a known mechanism associated with the death of dopamine-producing neurons. Zebrafish are tiny fish which can be used to study Parkinson's disease, as they are easy to manipulate in the lab and share many characteristics with humans. In particular, they can be helpful to test the effects of various potential drugs on the condition. Here, Kim et al. established a new zebrafish model in which dopamine-producing brain cells die due to their mitochondria not working properly; they then used this assay to assess the impact of 1,403 different chemicals on the integrity of these cells. A group of molecules called renin-angiotensin-aldosterone (RAAS) inhibitors was shown to protect dopamine-producing neurons and stopped them from dying as often. These are already used to treat high blood pressure as they help to dilate blood vessels. In the brain, however, RAAS worked by restoring certain mitochondrial processes. Kim et al. then investigated whether these results are relevant in other, broader contexts. They were able to show that RAAS inhibitors have the same effect in other animals, and that Parkinson's disease often progresses more slowly in patients that already take these drugs for high blood pressure. Taken together, these findings therefore suggest that RAAS inhibitors may be useful to treat Parkinson's disease, as well as other brain illnesses that emerge because of mitochondria not working properly. Clinical studies and new ways to improve these drugs are needed to further investigate and capitalize on these potential benefits.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
/
Sistema Renina-Angiotensina
/
Fármacos Neuroprotectores
/
Bloqueadores del Receptor Tipo 1 de Angiotensina II
/
Neuronas Dopaminérgicas
/
Mitocondrias
/
Antiparkinsonianos
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Elife
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos