Your browser doesn't support javascript.
loading
ClusterMap for multi-scale clustering analysis of spatial gene expression.
He, Yichun; Tang, Xin; Huang, Jiahao; Ren, Jingyi; Zhou, Haowen; Chen, Kevin; Liu, Albert; Shi, Hailing; Lin, Zuwan; Li, Qiang; Aditham, Abhishek; Ounadjela, Johain; Grody, Emanuelle I; Shu, Jian; Liu, Jia; Wang, Xiao.
Afiliación
  • He Y; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Tang X; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Huang J; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Ren J; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Zhou H; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Chen K; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Liu A; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Shi H; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Lin Z; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Li Q; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Aditham A; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Ounadjela J; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Grody EI; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Shu J; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
  • Liu J; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
  • Wang X; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Nat Commun ; 12(1): 5909, 2021 10 08.
Article en En | MEDLINE | ID: mdl-34625546
Quantifying RNAs in their spatial context is crucial to understanding gene expression and regulation in complex tissues. In situ transcriptomic methods generate spatially resolved RNA profiles in intact tissues. However, there is a lack of a unified computational framework for integrative analysis of in situ transcriptomic data. Here, we introduce an unsupervised and annotation-free framework, termed ClusterMap, which incorporates the physical location and gene identity of RNAs, formulates the task as a point pattern analysis problem, and identifies biologically meaningful structures by density peak clustering (DPC). Specifically, ClusterMap precisely clusters RNAs into subcellular structures, cell bodies, and tissue regions in both two- and three-dimensional space, and performs consistently on diverse tissue types, including mouse brain, placenta, gut, and human cardiac organoids. We demonstrate ClusterMap to be broadly applicable to various in situ transcriptomic measurements to uncover gene expression patterns, cell niche, and tissue organization principles from images with high-dimensional transcriptomic profiles.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Análisis por Conglomerados / Expresión Génica / Transcriptoma Límite: Animals / Female / Humans / Pregnancy Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Análisis por Conglomerados / Expresión Génica / Transcriptoma Límite: Animals / Female / Humans / Pregnancy Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos