In vivo application of an implantable tri-anchored methylene blue-based electrochemical pH sensor.
Biosens Bioelectron
; 197: 113728, 2022 Feb 01.
Article
en En
| MEDLINE
| ID: mdl-34763151
The development of robust implantable sensors is important in the successful advancement of personalised medicine as they have the potential to provide in situ real-time data regarding the status of health and disease and the effectiveness of treatment. Tissue pH is a key physiological parameter and herein, we report the design, fabrication, functionalisation, encapsulation and protection of a miniaturised, self-contained, electrochemical pH sensor system and characterisation of sensor performance. Notably for the first time in this environment the pH sensor was based on a methylene blue redox reporter which showed remarkable robustness, accuracy and sensitivity. This was achieved by encapsulation of a self-assembled monolayer containing methylene blue entrapped within a Nafion layer. Another powerful feature was the incorporation, within the same implanted device, of a fabricated on-chip Ag/AgCl reference electrode - vital in any electrochemical sensor, but often ignored. When utilised in vivo, the sensor allowed accurate tracking of externally induced pH changes within a naturally occurring ovine lung cancer model, and correlated well with single point laboratory measurements made on extracted arterial blood, whilst enabling in vivo time-dependent measurements. The sensors functioned robustly whilst implanted, and maintained in vitro function once extracted and together, these results demonstrate proof-of-concept of the ability to sense real-time intratumoral tissue pH changes in vivo.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Técnicas Biosensibles
/
Azul de Metileno
Límite:
Animals
Idioma:
En
Revista:
Biosens Bioelectron
Asunto de la revista:
BIOTECNOLOGIA
Año:
2022
Tipo del documento:
Article