Your browser doesn't support javascript.
loading
Bioaccumulation but no biomagnification of silver sulfide nanoparticles in freshwater snails and planarians.
Silva, Patrícia V; Pinheiro, Carlos; Morgado, Rui G; Verweij, Rudo A; van Gestel, Cornelis A M; Loureiro, Susana.
Afiliación
  • Silva PV; CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal. Electronic address: pverissimo@ua.pt.
  • Pinheiro C; CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
  • Morgado RG; CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
  • Verweij RA; Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
  • van Gestel CAM; Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
  • Loureiro S; CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
Sci Total Environ ; 808: 151956, 2022 Feb 20.
Article en En | MEDLINE | ID: mdl-34843767
Bioaccumulation studies are critical in regulatory decision making on the potential environmental risks of engineered nanoparticles (NPs). The present study evaluated the toxicokinetics of silver, taken up from sulfide nanoparticles (Ag2S NPs; simulating an aged Ag NP form) and AgNO3 (ionic counterpart), in the pulmonate snail Physa acuta and the planarian Girardia tigrina. The snails were first exposed for 7 days to Ag-spiked water, along with the microalgae Raphidocelis subcapitata upon which they fed setting up a double route exposure, and subsequently provided as pre-exposed food to the planarians. Ag toxicokinetics and bioaccumulation were assessed in planarians and snails, and potential biomagnification from snail to planarian was evaluated. Gut depuration was also explored to understand whether it constitutes a factor likely to influence Ag toxicokinetics and internal concentrations in the test species. Both species revealed Ag uptake in Ag2S NP and AgNO3 treatments, with higher uptake from the latter. Uptake by the snails was probably via a combination of water exposure and ingested algae provided as food, but ingestion of algae possibly had higher relevance for Ag uptake from the Ag2S NPs compared to AgNO3. For planarians, diet probably was the most important exposure route since no Ag uptake was observed in previous waterborne exposures to Ag2S NPs. Kinetics and internal Ag concentrations did not significantly differ between depurated and non-depurated snails or planarians. The planarians fed on snails revealed no biomagnification. To the best of our knowledge this is the first study investigating the toxicokinetics and biomagnification of NPs in planarians, and with that providing important data on the kinetics and bioaccumulation of NPs in a relevant benthic species.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Planarias / Nanopartículas del Metal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Planarias / Nanopartículas del Metal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Sci Total Environ Año: 2022 Tipo del documento: Article