Your browser doesn't support javascript.
loading
2D Nb3SBr7 and Ta3SBr7: Experimentally Achievable Janus Photocatalysts with Robust Coexistence of Strong Optical Absorption, Intrinsic Charge Separation, and Ultrahigh Solar-to-Hydrogen Efficiency.
Zhou, Yungang; Zhou, Liujiang; He, Junjie.
Afiliación
  • Zhou Y; School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China.
  • Zhou L; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
  • He J; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
ACS Appl Mater Interfaces ; 14(1): 1643-1651, 2022 Jan 12.
Article en En | MEDLINE | ID: mdl-34939780
Recently, two-dimensional (2D) Janus semiconductors have attracted great attention in photocatalytic applications owing to their extraordinary properties, especially the intrinsic polarization-induced spontaneous carrier separation, strong optical absorption, and ultrahigh solar-to-hydrogen (STH) efficiency. However, experimental achievable candidates for 2D intrinsic Janus semiconductors are rarely reported. Herein, based on density functional theory (DFT) calculations, we uncovered two new 2D photocatalysts, namely, Janus Nb3SBr7 and Ta3SBr7 bilayers. We revealed that both structures are highly feasible to be obtained from their bulk counterparts. Excitingly, intrinsic charge separations emerge in both structures, which are beneficial to the repression of recombinations of their photoexcited carriers. Optical absorptions of both structures can be activated in the visible and even infrared regions. Most interestingly, Nb3SBr7 and Ta3SBr7 bilayers can exhibit ultrahigh STH efficiencies of 35% and 31%, respectively, which are larger than those of most 2D Janus structures. In addition, we further found that these distinguished photocatalytic properties are rather robust and are independent of their stacking modes. Experimental feasibilities and robust coexistences of intrinsic charge separations, ultrahigh STH efficiencies, and strong absorptions endow Nb3SBr7 and Ta3SBr7 bilayers as hopeful photocatalysts for water splitting.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China