Your browser doesn't support javascript.
loading
Inferring the distribution of fitness effects in patient-sampled and experimental virus populations: two case studies.
Morales-Arce, Ana Y; Johri, Parul; Jensen, Jeffrey D.
Afiliación
  • Morales-Arce AY; Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
  • Johri P; Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
  • Jensen JD; Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA. jeffrey.d.jensen@asu.edu.
Heredity (Edinb) ; 128(2): 79-87, 2022 02.
Article en En | MEDLINE | ID: mdl-34987185
We here propose an analysis pipeline for inferring the distribution of fitness effects (DFE) from either patient-sampled or experimentally-evolved viral populations, that explicitly accounts for non-Wright-Fisher and non-equilibrium population dynamics inherent to pathogens. We examine the performance of this approach via extensive power and performance analyses, and highlight two illustrative applications - one from an experimentally-passaged RNA virus, and the other from a clinically-sampled DNA virus. Finally, we discuss how such DFE inference may shed light on major research questions in virus evolution, ranging from a quantification of the population genetic processes governing genome size, to the role of Hill-Robertson interference in dictating adaptive outcomes, to the potential design of novel therapeutic approaches to eradicate within-patient viral populations via induced mutational meltdown.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Virus / Modelos Genéticos Límite: Humans Idioma: En Revista: Heredity (Edinb) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Virus / Modelos Genéticos Límite: Humans Idioma: En Revista: Heredity (Edinb) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos