Your browser doesn't support javascript.
loading
Fungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattle.
López-García, Adrián; Saborío-Montero, Alejandro; Gutiérrez-Rivas, Mónica; Atxaerandio, Raquel; Goiri, Idoia; García-Rodríguez, Aser; Jiménez-Montero, Jose A; González, Carmen; Tamames, Javier; Puente-Sánchez, Fernando; Serrano, Magdalena; Carrasco, Rafael; Óvilo, Cristina; González-Recio, Oscar.
Afiliación
  • López-García A; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.
  • Saborío-Montero A; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.
  • Gutiérrez-Rivas M; Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, 11501 San José, Costa Rica.
  • Atxaerandio R; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.
  • Goiri I; NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain.
  • García-Rodríguez A; NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain.
  • Jiménez-Montero JA; NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain.
  • González C; Confederación de Asociaciones de Frisona Española (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain.
  • Tamames J; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.
  • Puente-Sánchez F; Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain.
  • Serrano M; Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain.
  • Carrasco R; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.
  • Óvilo C; Departamento de Periodismo y Nuevos Medios, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
  • González-Recio O; Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.
Gigascience ; 112022 01 25.
Article en En | MEDLINE | ID: mdl-35077540
ABSTRACT

BACKGROUND:

Mitigating the effects of global warming has become the main challenge for humanity in recent decades. Livestock farming contributes to greenhouse gas emissions, with an important output of methane from enteric fermentation processes, mostly in ruminants. Because ruminal microbiota is directly involved in digestive fermentation processes and methane biosynthesis, understanding the ecological relationships between rumen microorganisms and their active metabolic pathways is essential for reducing emissions. This study analysed whole rumen metagenome using long reads and considering its compositional nature in order to disentangle the role of rumen microbes in methane emissions.

RESULTS:

The ß-diversity analyses suggested a subtle association between methane production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance analysis identified 36 genera and 279 KEGGs as significantly associated with methane production (Padj < 0.05). Those genera associated with high methane production were Eukaryota from Alveolata and Fungi clades, while Bacteria were associated with low methane emissions. The genus-level association network showed 2 clusters grouping Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs were found to be differentially abundant between low- and high-emission animals and were mainly involved in metabolic pathways. No KEGGs included in the methane metabolism pathway (ko00680) were detected as associated with high methane emissions. The KEGG network showed 3 clusters grouping KEGGs associated with high emissions, low emissions, and not differentially abundant in either. A deeper analysis of the differentially abundant KEGGs revealed that genes related with anaerobic respiration through nitrate degradation were more abundant in low-emission animals.

CONCLUSIONS:

Methane emissions are largely associated with the relative abundance of ciliates and fungi. The role of nitrate electron acceptors can be particularly important because this respiration mechanism directly competes with methanogenesis. Whole metagenome sequencing is necessary to jointly consider the relative abundance of Bacteria, Archaea, and Eukaryota in the statistical analyses. Nutritional and genetic strategies to reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and Fungi in the rumen. This experiment has generated the largest ONT ruminal metagenomic dataset currently available.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Rumen / Metano Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Gigascience Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Rumen / Metano Tipo de estudio: Risk_factors_studies Límite: Animals Idioma: En Revista: Gigascience Año: 2022 Tipo del documento: Article País de afiliación: España