Your browser doesn't support javascript.
loading
Efficient and error-free fluorescent gene tagging in human organoids without double-strand DNA cleavage.
Bollen, Yannik; Hageman, Joris H; van Leenen, Petra; Derks, Lucca L M; Ponsioen, Bas; Buissant des Amorie, Julian R; Verlaan-Klink, Ingrid; van den Bos, Myrna; Terstappen, Leon W M M; van Boxtel, Ruben; Snippert, Hugo J G.
Afiliación
  • Bollen Y; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
  • Hageman JH; Oncode Institute, Utrecht, the Netherlands.
  • van Leenen P; Medical Cell Biophysics, TechMed Centre, University of Twente, Enschede, the Netherlands.
  • Derks LLM; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
  • Ponsioen B; Oncode Institute, Utrecht, the Netherlands.
  • Buissant des Amorie JR; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
  • Verlaan-Klink I; Oncode Institute, Utrecht, the Netherlands.
  • van den Bos M; Oncode Institute, Utrecht, the Netherlands.
  • Terstappen LWMM; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
  • van Boxtel R; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, the Netherlands.
  • Snippert HJG; Oncode Institute, Utrecht, the Netherlands.
PLoS Biol ; 20(1): e3001527, 2022 01.
Article en En | MEDLINE | ID: mdl-35089911
ABSTRACT
CRISPR-associated nucleases are powerful tools for precise genome editing of model systems, including human organoids. Current methods describing fluorescent gene tagging in organoids rely on the generation of DNA double-strand breaks (DSBs) to stimulate homology-directed repair (HDR) or non-homologous end joining (NHEJ)-mediated integration of the desired knock-in. A major downside associated with DSB-mediated genome editing is the required clonal selection and expansion of candidate organoids to verify the genomic integrity of the targeted locus and to confirm the absence of off-target indels. By contrast, concurrent nicking of the genomic locus and targeting vector, known as in-trans paired nicking (ITPN), stimulates efficient HDR-mediated genome editing to generate large knock-ins without introducing DSBs. Here, we show that ITPN allows for fast, highly efficient, and indel-free fluorescent gene tagging in human normal and cancer organoids. Highlighting the ease and efficiency of ITPN, we generate triple fluorescent knock-in organoids where 3 genomic loci were simultaneously modified in a single round of targeting. In addition, we generated model systems with allele-specific readouts by differentially modifying maternal and paternal alleles in one step. ITPN using our palette of targeting vectors, publicly available from Addgene, is ideally suited for generating error-free heterozygous knock-ins in human organoids.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Coloración y Etiquetado / ADN / Organoides / Desoxirribonucleasa I / Sitios Genéticos / Reparación del ADN por Recombinación Límite: Humans Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Coloración y Etiquetado / ADN / Organoides / Desoxirribonucleasa I / Sitios Genéticos / Reparación del ADN por Recombinación Límite: Humans Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2022 Tipo del documento: Article País de afiliación: Países Bajos