Your browser doesn't support javascript.
loading
Vibrational Properties in Highly Strained Hexagonal Boron Nitride Bubbles.
Blundo, Elena; Surrente, Alessandro; Spirito, Davide; Pettinari, Giorgio; Yildirim, Tanju; Chavarin, Carlos Alvarado; Baldassarre, Leonetta; Felici, Marco; Polimeni, Antonio.
Afiliación
  • Blundo E; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Surrente A; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Spirito D; Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland.
  • Pettinari G; IHP-Leibniz Institut fur Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
  • Yildirim T; Institute for Photonics and Nanotechnologies (CNR-IFN), National Research Council, 00156 Rome, Italy.
  • Chavarin CA; Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.
  • Baldassarre L; IHP-Leibniz Institut fur Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
  • Felici M; Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Polimeni A; IHP-Leibniz Institut fur Innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
Nano Lett ; 22(4): 1525-1533, 2022 Feb 23.
Article en En | MEDLINE | ID: mdl-35107287
ABSTRACT
Hexagonal boron nitride (hBN) is widely used as a protective layer for few-atom-thick crystals and heterostructures (HSs), and it hosts quantum emitters working up to room temperature. In both instances, strain is expected to play an important role, either as an unavoidable presence in the HS fabrication or as a tool to tune the quantum emitter electronic properties. Addressing the role of strain and exploiting its tuning potentiality require the development of efficient methods to control it and of reliable tools to quantify it. Here we present a technique based on hydrogen irradiation to induce the formation of wrinkles and bubbles in hBN, resulting in remarkably high strains of ∼2%. By combining infrared (IR) near-field scanning optical microscopy and micro-Raman measurements with numerical calculations, we characterize the response to strain for both IR-active and Raman-active modes, revealing the potential of the vibrational properties of hBN as highly sensitive strain probes.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2022 Tipo del documento: Article País de afiliación: Italia