Your browser doesn't support javascript.
loading
Genome-Wide ChIP-seq and RNA-seq Analyses of STAT3 Target Genes in TLRs Activated Human Peripheral Blood B Cells.
Wu, Jing; Jin, Ying-Ying; Gong, Ruo-Lan; Yang, Fan; Su, Xiao-Ya; Chen, Tong-Xin.
Afiliación
  • Wu J; Division of Immunology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
  • Jin YY; Allergy/Immunology Innovation Team, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
  • Gong RL; Allergy/Immunology Innovation Team, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
  • Yang F; Department of Rheumatology/Immunology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
  • Su XY; Division of Immunology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
  • Chen TX; Division of Immunology, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Front Immunol ; 13: 821457, 2022.
Article en En | MEDLINE | ID: mdl-35345674
Toll like receptors (TLRs) induced response plays a vital role in B-cell development and activation, in which TLR7-mediated and TLR9-mediated response interact together and play antagonistic or cooperative roles at different situations. Previous studies showed that the transcription factor signal transducer and activator of transcription (STAT) 3 was one of the key transcriptional factors (TFs) needed for both TLR7 and TLR9 signaling in B cell, and patients with autosomal dominant hyper IgE syndromes (AD-HIES) due to STAT3 mutations having defective TLRs response in B cells. However, how STAT3 affects its target genes and the downstream signaling pathways in B cell upon TLRs stimulation remains unclarified on a genome-wide level. ChIP-seq and RNA-seq was used in this study to identify the STAT3 targets in response to TLRs stimulation in human B cell. STAT3 ChIP-seq results showed a total of 611 and 2,289 differential STAT3-binding sites in human B cell after TLR7 and TLR9 agonists stimulation, respectively. RNA-seq results showed 1,186 and 1,775 differentially expressed genes after TLR7 and TLR9 activation, respectively. We identified 47 primary STAT3 target genes after TLR7 activation and 189 target genes after TLR9 activation in B cell by integration of STAT3 ChIP-seq and RNA-seq data. Among these STAT3 primary targets, we identified 7 TFs and 18 TFs for TLR7 and TLR9 response, respectively. Besides, we showed that STAT3 might regulate TLR9, but not TLR7 response in B cells through directly regulating integrin signaling pathway, which might further affect the antagonism between TLR7 and TLR9 signaling in B cell. Our study provides insights into the molecular mechanism of human TLRs response in B cell and how it can be regulated, which helps to better understand and modulate TLR-mediated pathogenic immune responses in B cell.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Receptor Toll-Like 9 / Receptor Toll-Like 7 Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Front Immunol Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Receptor Toll-Like 9 / Receptor Toll-Like 7 Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Front Immunol Año: 2022 Tipo del documento: Article País de afiliación: China