Your browser doesn't support javascript.
loading
Laser-Derived Interfacial Confinement Enables Planar Growth of 2D SnS2 on Graphene for High-Flux Electron/Ion Bridging in Sodium Storage.
Xu, Xiaosa; Xu, Fei; Zhang, Xiuhai; Qu, Changzhen; Zhang, Jinbo; Qiu, Yuqian; Zhuang, Rong; Wang, Hongqiang.
Afiliación
  • Xu X; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Xu F; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Zhang X; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Qu C; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Zhang J; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Qiu Y; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Zhuang R; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
  • Wang H; State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China. hongqiang.wang@nwpu.edu.cn.
Nanomicro Lett ; 14(1): 91, 2022 Apr 01.
Article en En | MEDLINE | ID: mdl-35362824
Establishing covalent heterointerfaces with face-to-face contact is promising for advanced energy storage, while challenge remains on how to inhibit the anisotropic growth of nucleated crystals on the matrix. Herein, face-to-face covalent bridging in-between the 2D-nanosheets/graphene heterostructure is constructed by intentionally prebonding of laser-manufactured amorphous and metastable nanoparticles on graphene, where the amorphous nanoparticles were designed via the competitive oxidation of Sn-O and Sn-S bonds, and metastable feature was employed to facilitate the formation of the C-S-Sn covalent bonding in-between the heterostructure. The face-to-face bridging of ultrathin SnS2 nanosheets on graphene enables the heterostructure huge covalent coupling area and high loading and thus renders unimpeded electron/ion transfer pathways and indestructible electrode structure, and impressive reversible capacity and rate capability for sodium-ion batteries, which rank among the top in records of the SnS2-based anodes. Present work thus provides an alternative of constructing heterostructures with planar interfaces for electrochemical energy storage and even beyond.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nanomicro Lett Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nanomicro Lett Año: 2022 Tipo del documento: Article