Your browser doesn't support javascript.
loading
Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors.
Chan, Doreen; Chien, Jun-Chau; Axpe, Eneko; Blankemeier, Louis; Baker, Samuel W; Swaminathan, Sarath; Piunova, Victoria A; Zubarev, Dmitry Yu; Maikawa, Caitlin L; Grosskopf, Abigail K; Mann, Joseph L; Soh, H Tom; Appel, Eric A.
Afiliación
  • Chan D; Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
  • Chien JC; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Axpe E; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Blankemeier L; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Baker SW; Department of Comparative Medicine, Stanford University, Stanford, CA, 94305, USA.
  • Swaminathan S; IBM Almaden Research Center, San Jose, CA, 95120, USA.
  • Piunova VA; IBM Almaden Research Center, San Jose, CA, 95120, USA.
  • Zubarev DY; IBM Almaden Research Center, San Jose, CA, 95120, USA.
  • Maikawa CL; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
  • Grosskopf AK; Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Mann JL; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Soh HT; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
  • Appel EA; ChEM-H Institute, Stanford University, Stanford, CA, 94304, USA.
Adv Mater ; 34(24): e2109764, 2022 Jun.
Article en En | MEDLINE | ID: mdl-35390209
ABSTRACT
Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered "gold-standard" device coatings to reduce biofouling. To discover novel anti-biofouling materials, a combinatorial library of polyacrylamide-based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet-rich plasma in a high-throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti-biofouling properties over current gold-standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti-biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small-molecule drug in vivo better than gold-standard coatings. The novel methodology described enables the discovery of anti-biofouling materials that can extend the lifetime of real-time in vivo sensing devices.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Incrustaciones Biológicas Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Incrustaciones Biológicas Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos