Your browser doesn't support javascript.
loading
Modular super-assembly of hierarchical superstructures from monomicelle building blocks.
Zhao, Zaiwang; Zhao, Yujuan; Lin, Runfeng; Ma, Yuzhu; Wang, Lipeng; Liu, Liangliang; Lan, Kun; Zhang, Jie; Chen, Hanxing; Liu, Mengli; Bu, Fanxing; Zhang, Pengfei; Peng, Liang; Zhang, Xingmiao; Liu, Yupu; Hung, Chin-Te; Dong, Angang; Li, Wei; Zhao, Dongyuan.
Afiliación
  • Zhao Z; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhao Y; Centre for High-Resolution Electron Microscopy (CћEM), School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, P. R. China.
  • Lin R; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Ma Y; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Wang L; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Liu L; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Lan K; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhang J; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Chen H; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Liu M; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Bu F; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhang P; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Peng L; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhang X; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Liu Y; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Hung CT; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Dong A; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Li W; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
  • Zhao D; Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM and State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China.
Sci Adv ; 8(19): eabo0283, 2022 May 13.
Article en En | MEDLINE | ID: mdl-35559684
Manipulating the super-assembly of polymeric building blocks still remains a great challenge due to their thermodynamic instability. Here, we report on a type of three-dimensional hierarchical core-satellite SiO2@monomicelle spherical superstructures via a previously unexplored monomicelle interfacial super-assembly route. Notably, in this superstructure, an ultrathin single layer of monomicelle subunits (~18 nm) appears in a typically hexagon-like regular discontinuous distribution (adjacent micelle distance of ~30 nm) on solid spherical interfaces (SiO2), which is difficult to achieve by conventional super-assembled methods. Besides, the number of the monomicelles on colloidal SiO2 interfaces can be quantitatively controlled (from 76 to 180). This quantitative control can be precisely manipulated by tuning the interparticle electrostatic interactions (the intermicellar electrostatic repulsion and electrostatic attractions between the monomicelle units and the SiO2 substrate). This monomicelle interfacial super-assembly strategy will enable a controllable way for building multiscale hierarchical regular micro- and/or macroscale materials and devices.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2022 Tipo del documento: Article