Your browser doesn't support javascript.
loading
Spatialization and Prediction of Seasonal NO2 Pollution Due to Climate Change in the Korean Capital Area through Land Use Regression Modeling.
Lim, No Ol; Hwang, Jinhoo; Lee, Sung-Joo; Yoo, Youngjae; Choi, Yuyoung; Jeon, Seongwoo.
Afiliación
  • Lim NO; Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea.
  • Hwang J; Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea.
  • Lee SJ; Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea.
  • Yoo Y; Environmental Assessment Group, Korea Environment Institute, Sejong 30147, Korea.
  • Choi Y; Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea.
  • Jeon S; Ojeong Resilience Institute, Korea University, Seoul 02841, Korea.
Article en En | MEDLINE | ID: mdl-35564506
Urbanization is causing an increase in air pollution leading to serious health issues. However, even though the necessity of its regulation is acknowledged, there are relatively few monitoring sites in the capital metropolitan city of the Republic of Korea. Furthermore, a significant relationship between air pollution and climate variables is expected, thus the prediction of air pollution under climate change should be carefully attended. This study aims to predict and spatialize present and future NO2 distribution by using existing monitoring sites to overcome deficiency in monitoring. Prediction was conducted through seasonal Land use regression modeling using variables correlated with NO2 concentration. Variables were selected through two correlation analyses and future pollution was predicted under HadGEM-AO RCP scenarios 4.5 and 8.5. Our results showed a relatively high NO2 concentration in winter in both present and future predictions, resulting from elevated use of fossil fuels in boilers, and also showed increments of NO2 pollution due to climate change. The results of this study could strengthen existing air pollution management strategies and mitigation measures for planning concerning future climate change, supporting proper management and control of air pollution.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Contaminantes Atmosféricos / Contaminación del Aire Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Int J Environ Res Public Health Año: 2022 Tipo del documento: Article