Your browser doesn't support javascript.
loading
Optical Entanglement of Distinguishable Quantum Emitters.
Levonian, D S; Riedinger, R; Machielse, B; Knall, E N; Bhaskar, M K; Knaut, C M; Bekenstein, R; Park, H; Loncar, M; Lukin, M D.
Afiliación
  • Levonian DS; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Riedinger R; AWS Center for Quantum Computing, Pasadena, California 91125, USA.
  • Machielse B; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Knall EN; Institut für Laserphysik und Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany.
  • Bhaskar MK; The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany.
  • Knaut CM; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Bekenstein R; AWS Center for Quantum Computing, Pasadena, California 91125, USA.
  • Park H; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Loncar M; Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
  • Lukin MD; AWS Center for Quantum Computing, Pasadena, California 91125, USA.
Phys Rev Lett ; 128(21): 213602, 2022 May 27.
Article en En | MEDLINE | ID: mdl-35687460
ABSTRACT
Solid-state quantum emitters are promising candidates for the realization of quantum networks, owing to their long-lived spin memories, high-fidelity local operations, and optical connectivity for long-range entanglement. However, due to differences in local environment, solid-state emitters typically feature a range of distinct transition frequencies, which makes it challenging to create optically mediated entanglement between arbitrary emitter pairs. We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths. In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits. We experimentally demonstrate the protocol using two silicon-vacancy centers in a diamond nanophotonic cavity, with optical transitions separated by 7.4 GHz. Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both colocated and spatially separated emitters, a key step toward scaling up quantum information processing systems.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos