Your browser doesn't support javascript.
loading
Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data.
Xu, Junlin; Cui, Lingyu; Zhuang, Jujuan; Meng, Yajie; Bing, Pingping; He, Binsheng; Tian, Geng; Kwok Pui, Choi; Wu, Taoyang; Wang, Bing; Yang, Jialiang.
Afiliación
  • Xu J; College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China.
  • Cui L; College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150000, China.
  • Zhuang J; School of Science, Dalian Maritime University, Dalian, Liaoning, 116026, China.
  • Meng Y; College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China.
  • Bing P; Academician Workstation, Changsha Medical University, Changsha, 410219, China.
  • He B; Academician Workstation, Changsha Medical University, Changsha, 410219, China.
  • Tian G; Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China.
  • Kwok Pui C; Department of Statistics and Data Science, Department of Mathematics, National University of Singapore, Singapore, 117546, Republic of Singapore.
  • Wu T; School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
  • Wang B; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China. Electronic address: wangbing@ustc.edu.
  • Yang J; Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China. Electronic address: yangjl@geneis.cn.
Comput Biol Med ; 146: 105697, 2022 07.
Article en En | MEDLINE | ID: mdl-35697529
Recent advances in single-cell RNA sequencing (scRNA-seq) provide exciting opportunities for transcriptome analysis at single-cell resolution. Clustering individual cells is a key step to reveal cell subtypes and infer cell lineage in scRNA-seq analysis. Although many dedicated algorithms have been proposed, clustering quality remains a computational challenge for scRNA-seq data, which is exacerbated by inflated zero counts due to various technical noise. To address this challenge, we assess the combinations of nine popular dropout imputation methods and eight clustering methods on a collection of 10 well-annotated scRNA-seq datasets with different sample sizes. Our results show that (i) imputation algorithms do typically improve the performance of clustering methods, and the quality of data visualization using t-Distributed Stochastic Neighbor Embedding; and (ii) the performance of a particular combination of imputation and clustering methods varies with dataset size. For example, the combination of single-cell analysis via expression recovery and Sparse Subspace Clustering (SSC) methods usually works well on smaller datasets, while the combination of adaptively-thresholded low-rank approximation and single-cell interpretation via multikernel learning (SIMLR) usually achieves the best performance on larger datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Análisis de la Célula Individual Idioma: En Revista: Comput Biol Med Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Perfilación de la Expresión Génica / Análisis de la Célula Individual Idioma: En Revista: Comput Biol Med Año: 2022 Tipo del documento: Article País de afiliación: China