Your browser doesn't support javascript.
loading
Elucidating the Role of Antisolvents on the Surface Chemistry and Optoelectronic Properties of CsPbBrxI3-x Perovskite Nanocrystals.
Ye, Junzhi; Li, Zhenchao; Kubicki, Dominik J; Zhang, Yunwei; Dai, Linjie; Otero-Martínez, Clara; Reus, Manuel A; Arul, Rakesh; Dudipala, Kavya Reddy; Andaji-Garmaroudi, Zahra; Huang, Yi-Teng; Li, Zewei; Chen, Ziming; Müller-Buschbaum, Peter; Yip, Hin-Lap; Stranks, Samuel D; Grey, Clare P; Baumberg, Jeremy J; Greenham, Neil C; Polavarapu, Lakshminarayana; Rao, Akshay; Hoye, Robert L Z.
Afiliación
  • Ye J; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Li Z; State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
  • Kubicki DJ; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Zhang Y; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
  • Dai L; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Otero-Martínez C; School of Physics, Sun Yat-sen University, 510275 Guangzhou, China.
  • Reus MA; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Arul R; CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain.
  • Dudipala KR; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany.
  • Andaji-Garmaroudi Z; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Huang YT; Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
  • Li Z; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Chen Z; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Müller-Buschbaum P; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Yip HL; State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
  • Stranks SD; Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany.
  • Grey CP; Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany.
  • Baumberg JJ; State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
  • Greenham NC; Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
  • Polavarapu L; Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom.
  • Rao A; Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom.
  • Hoye RLZ; Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
J Am Chem Soc ; 144(27): 12102-12115, 2022 Jul 13.
Article en En | MEDLINE | ID: mdl-35759794
Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrxI3-x NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2022 Tipo del documento: Article País de afiliación: Reino Unido