Your browser doesn't support javascript.
loading
Genomic regions associate with major axes of variation driven by gas exchange and leaf construction traits in cultivated sunflower (Helianthus annuus L.).
Earley, Ashley M; Temme, Andries A; Cotter, Christopher R; Burke, John M.
Afiliación
  • Earley AM; Department of Plant Biology, University of Georgia, Athens, Georgia, USA.
  • Temme AA; Department of Plant Biology, University of Georgia, Athens, Georgia, USA.
  • Cotter CR; Division of Intensive Plant Food Systems, Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
  • Burke JM; Department of Plant Biology, University of Georgia, Athens, Georgia, USA.
Plant J ; 111(5): 1425-1438, 2022 09.
Article en En | MEDLINE | ID: mdl-35815412
ABSTRACT
Stomata and leaf veins play an essential role in transpiration and the movement of water throughout leaves. These traits are thus thought to play a key role in the adaptation of plants to drought and a better understanding of the genetic basis of their variation and coordination could inform efforts to improve drought tolerance. Here, we explore patterns of variation and covariation in leaf anatomical traits and analyze their genetic architecture via genome-wide association (GWA) analyses in cultivated sunflower (Helianthus annuus L.). Traits related to stomatal density and morphology as well as lower-order veins were manually measured from digital images while the density of minor veins was estimated using a novel deep learning approach. Leaf, stomatal, and vein traits exhibited numerous significant correlations that generally followed expectations based on functional relationships. Correlated suites of traits could further be separated along three major principal component (PC) axes that were heavily influenced by variation in traits related to gas exchange, leaf hydraulics, and leaf construction. While there was limited evidence of colocalization when individual traits were subjected to GWA analyses, major multivariate PC axes that were most strongly influenced by several traits related to gas exchange or leaf construction did exhibit significant genomic associations. These results provide insight into the genetic basis of leaf trait covariation and showcase potential targets for future efforts aimed at modifying leaf anatomical traits in sunflower.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Helianthus Tipo de estudio: Risk_factors_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Helianthus Tipo de estudio: Risk_factors_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos