Your browser doesn't support javascript.
loading
Feasibility of Coronary CT Angiography-derived Left Ventricular Long-Axis Shortening as an Early Marker of Ventricular Dysfunction in Transcatheter Aortic Valve Replacement.
Aquino, Gilberto J; Decker, Josua A; Schoepf, U Joseph; Carson, Landin; Paladugu, Namrata; Yacoub, Basel; Brandt, Verena; Emrich, Anna Lena; Schwarz, Florian; Burt, Jeremy R; Bayer, Richard; Varga-Szemes, Akos; Emrich, Tilman.
Afiliación
  • Aquino GJ; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Decker JA; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Schoepf UJ; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Carson L; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Paladugu N; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Yacoub B; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Brandt V; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Emrich AL; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Schwarz F; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Burt JR; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Bayer R; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Varga-Szemes A; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
  • Emrich T; Division of Cardiovascular Imaging, Department of Radiology and Radiological Science (G.J.A., J.A.D., U.J.S., L.C., N.P., B.Y., V.B., J.R.B., R.B., A.V.S., T.E.), Division of Cardiothoracic Surgery, Department of Surgery (A.L.E.), and Division of Cardiology, Department of Medicine (R.B.), Medical Un
Radiol Cardiothorac Imaging ; 4(3): e210205, 2022 Jun.
Article en En | MEDLINE | ID: mdl-35833168
ABSTRACT

Purpose:

To evaluate the value of using left ventricular (LV) long-axis shortening (LAS) derived from coronary CT angiography (CCTA) to predict mortality in patients with severe aortic stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Materials and

Methods:

Patients with severe AS who underwent CCTA for preprocedural TAVR planning between September 2014 and December 2019 were included in this retrospective study. CCTA covered the whole cardiac cycle in 10% increments. Image series reconstructed at end systole and end diastole were used to measure LV-LAS. All-cause mortality within 24 months of follow-up after TAVR was recorded. Cox regression analysis was performed, and hazard ratios (HRs) are presented with 95% CIs. The C index was used to evaluate model performance, and the likelihood ratio χ2 test was performed to compare nested models.

Results:

The study included 175 patients (median age, 79 years [IQR, 73-85 years]; 92 men). The mortality rate was 22% (38 of 175). When adjusting for predictive clinical confounders, it was found that LV-LAS could be used independently to predict mortality (adjusted HR, 2.83 [95% CI 1.13, 7.07]; P = .03). In another model using the Society of Thoracic Surgeons Predicted Risk of Mortality (STS-PROM), LV-LAS remained significant (adjusted HR, 3.38 [95 CI 1.48, 7.72]; P = .004), and its use improved the predictive value of the STS-PROM, increasing the STS-PROM C index from 0.64 to 0.71 (χ2 = 29.9 vs 19.7, P = .001). In a subanalysis of patients with a normal LV ejection fraction (LVEF), the significance of LV-LAS persisted (adjusted HR, 3.98 [95 CI 1.56, 10.17]; P = .004).

Conclusion:

LV-LAS can be used independently to predict mortality in patients undergoing TAVR, including those with a normal LVEF.Keywords CT Angiography, Transcatheter Aortic Valve Implantation/Replacement (TAVI/TAVR), Cardiac, Outcomes Analysis, Cardiomyopathies, Left Ventricle, Aortic Valve Supplemental material is available for this article. © RSNA, 2022See also the commentary by Everett and Leipsic in this issue.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Radiol Cardiothorac Imaging Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Radiol Cardiothorac Imaging Año: 2022 Tipo del documento: Article