Your browser doesn't support javascript.
loading
Synergy of Weakly-Solvated Electrolyte and Optimized Interphase Enables Graphite Anode Charge at Low Temperature.
Yang, Yang; Fang, Zhong; Yin, Yue; Cao, Yongjie; Wang, Yonggang; Dong, Xiaoli; Xia, Yongyao.
Afiliación
  • Yang Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Fang Z; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Yin Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Cao Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Wang Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Dong X; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
  • Xia Y; Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, China.
Angew Chem Int Ed Engl ; 61(36): e202208345, 2022 Sep 05.
Article en En | MEDLINE | ID: mdl-35833711
Graphite anode suffers from great capacity loss and even fails to charge (i.e. Li+ -intercalation) under low temperature, mainly arising from the large overpotential including sluggish de-solvation process and insufficient ions movement in the solid electrolyte interphase (SEI). Herein, an electrolyte is developed by utilizing weakly solvated molecule ethyl trifluoroacetate and film-forming fluoroethylene carbonate to achieve smooth de-solvation and high ionic conductivity at low temperature. Evolution of SEI formed at different temperatures is further investigated to propose an effective room-temperature SEI formation strategy for low-temperature operations. The synergetic effect of tamed electrolyte and optimized SEI enables graphite with a reversible charge/discharge capacity of 183 mAh g-1 at -30 °C and fast-charging up to 6C-rate at room temperature. Moreover, graphite||LiFePO4 full cell maintains a capacity retention of 78 % at -30 °C, and 37 % even at a super-low temperature of -60 °C. This work offers a progressive insight towards fast-charging and low-temperature batteries.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Año: 2022 Tipo del documento: Article País de afiliación: China